
Krzysztof Rzadca 	

Institute of Informatics, 	

University of Warsaw, Poland	

!
joint work with:	

Filip Skalski (U Warsaw / Google)	

!
based on work with:	

Vinicius Pinheiro (Grenoble)	

Denis Trystram (Grenoble)	

http://w
w

w.flickr.com
/photos/bobjagendorf/3456836120/

OStrich: 	

Fair Scheduler for Burst
Submissions of Parallel Jobs

http://www.flickr.com/photos/bobjagendorf/3456836120/

KEY MESSAGE: A FAIR, MULTIUSER
ONLINE SCHEDULING ALGORITHM

• Online problem with multiple users sharing a supercomputer	

• Workload composed of campaigns (~job arrays): jobs independent to
execute; the owner wants to finish all jobs as soon as possible	

• OStrich: an algorithm with a guarantee on worst-case slowdown
(stretch) for each user (OStrich ~ per-User Stretch)	

• The slowdown depends on the total number of users, and not the
total system load	

• Implementation as a SLURM scheduler used in a production cluster

MODEL: A TYPICAL
SUPERCOMPUTING CENTER	

M1

M2

M3

M4

M5

M6 8

32
2

8
10m

 processors

time

2 7
6

9

8

submission time (not known in advance)
processing time (known when the job appears)

owner (red user)

3 2

WHY CAMPAIGNS?

• Modern applications submit many related computing jobs	

• Map/Reduce	

• parameter sweep workflows	

• SLURM makes such submissions easier by job arrays  
(max job array size increased to 1M, so it’s useful)	

• But cluster schedulers treat such jobs as independent

WHY A WORST-CASE BOUND
FOR EACH USER?

• Many policies based on First-Come-First-Served	

• New jobs are put at the end of the queue	

• Thus, users with large workloads slow down everyone else	

• Hard to manage partial solutions:	

• Limits on number of jobs in the queue, 	

• Karma points, priority queues, etc.	

• Fair-share

A CAMPAIGN:
A BAG OF INDEPENDENT TASKS

user 1: campaign 1
user 1: campaign 2

time

t
1

(1) C
1

(1)

Δ
1

(1)

t
2

(1) C
2

(1)

Δ
2

(1)tt
2

(1)

σ
1

(1) σ
2

(1)

submission

start

user’s goal:
campaign

completion think time:	

next campaign not

ready

submission	

(next campaign)	

after C1

PRINCIPLE OF THE ALGORITHM:
PARETO-OPTIMALITY

M1
M2
M3
M4
M5
M6

10

10 10

10

M1
M2
M3
M4
M5
M6

10

1010

a fair-share schedule a Pareto-optimal schedule

completion times:	

(20,20)

completion times: 	

(10,20)

10

t t

PRINCIPLE OF THE ALGORITHM:
OPTIMIZE SLOWDOWN  
(BUT NO STARVATION)

M1
M2
M3
M4
M5
M6

20

20

10
M1
M2
M3
M4
M5
M6

a FCFS schedule: a slowdown-optimal schedule:

completion (30,20)	

slowdown (3,1)

10

20

20

10

10

t t

completion (10,30)	

slowdown (1,3/2)

OSTRICH ALGORITHM:
A VIRTUAL FAIR-SHARE SCHEDULE

DEFINES PRIORITIES FOR CHOOSING JOBS

Virtual

Real

M1
M2
M3
M4
M5
M6

M1
M2
M3
M4
M5
M6

1
23

4
5

44
444

33 222
1

12
3

3

222
111

3
2
2
2
2

two campaigns released at t=0

18

48

Green user scheduled first, as
finishes first in the virtual

OStrich assigns equal shares	

to each user

OSTRICH ALGORITHM:
NEW SUBMISSIONS “PREEMPT”

CURRENTLY EXECUTING CAMPAIGNS

1
1
1
1
1
1

Virtual

Real

M1
M2
M3
M4
M5
M6

M1
M2
M3
M4
M5
M6

1
23

4
5

44
444

33 222
1

12
3

3

222
111

3
2
2
2
2

6

6 42

3
2 12 11

new campaign at t=2

10

12

3
2
2
1

red user has priority
1
1

1

1
1
1

4
5

12

42

OSTRICH ALGORITHM:
NEXT CAMPAIGN DEFERRED UNTIL

PREV CAMPAIGN VIRTUAL COMPLETION

1
1
1
1
1
1

Virtual

Real

M1
M2
M3
M4
M5
M6

M1
M2
M3
M4
M5
M6

1
23

4
5

44
444

33 222
1

12
3

3

222
111

3
2
2
2
2

6

6

3
2 12 11

10

12

3
2
2
1

1
1

1

1
1
1

4
5

2
111

111

submitted at t=5
4
4
4
4

8

42

red campaign deferred in the virtual	

until the previous campaign completes

2

OSTRICH ALGORITHM:
NEXT CAMPAIGN DEFERRED UNTIL

PREV CAMPAIGN VIRTUAL COMPLETION

1
1
1
1
1
1

Virtual

Real

M1
M2
M3
M4
M5
M6

M1
M2
M3
M4
M5
M6

1
23

4
5

44
444

33 222
1

12
3

3

222
111

3
2
2
2
2

6

6

3
2 12 11

10

12

3
2
2
1

1
1

1

1
1
1

4
5

2
111

111

4
4
4
4

2

12	

6

30

SOME PROOFS?

http://w
w

w.supercoloring.com
/

http://www.supercoloring.com/wp-content/main/2010_08/Ostrich-head-in-sand-coloring-page.gif

AN UPPER BOUND ON THE
CAMPAIGN’S COMPLETION TIME

V

(Virtual)

R

(Real)

C(u)

i-1

user u

time
C(u)

i,q
σ(u)

i,q
S

t(u)

i

σ(u)

i

~
C(u)

i

~

J(u)

i

...

wait until the prev	

campaign completes

in virtual

standard upper bounds for
the current campaign

executing on all resources

AN UPPER BOUND ON THE
CAMPAIGN’S COMPLETION TIME

V

(Virtual)

R

(Real)

C(u)

i-1

user u

time
C(u)

i,q
σ(u)

i,q
S

t(u)

i

σ(u)

i

~
C(u)

i

~

J(u)

i

...

wait until the prev	

campaign completes

in virtual

standard upper bounds for
the current campaign

executing on all resources

upper bound on the surface
that can preempt while

campaign is executing in virtual

AN UPPER BOUND ON THE
CAMPAIGN’S COMPLETION TIME

V

(Virtual)

R

(Real)

C(u)

i-1

user u

time
C(u)

i,q
σ(u)

i,q
S

t(u)

i

σ(u)

i

~
C(u)

i

~

J(u)

i

...

wait until the prev	

campaign completes

in virtual

upper bound on the surface
that can preempt while

campaign is executing in virtual

standard upper bounds for
the current campaign

executing on all resources

EACH CAMPAIGN’S
SLOWDOWN IS BOUNDED

• campaign slowdown: flow time weighted by the surface 
 

• OStrich guarantee: 
 
 

• k is the number of active users	

• we treat pmax as constant (and small compared to campaign’s
surface)  

IMPLEMENTATION IN SLURM

FROM THEORY TO SLURM
• fixed reservations: as idle time	

• partitions: as (perhaps overlapping) sets of processors	

• users’ estimates are imprecise: simple estimates can be used
(not yet implemented!) (in simulations we use the average
from 2 last completed jobs)	

• campaign from a stream of jobs: we group jobs based on delay
from the first submission	

threshold this job starts a new campaign

3 jobs in a single campaign

A SEMI - ACTIVE SCHEDULER
• OStrich is notified about a newly submitted job;  

assigns 0 priority to this job	

• each 1-10 seconds, OStrich recalculates the virtual schedule  
(new jobs, completed jobs, changed jobs)	

• OStrich assigns decreasing priorities to jobs by campaign
order	

!

!

• the main SLURM daemon uses priorities to order jobs for
FCFS/backfill

1
1
1
1
1
1M1

M2
M3
M4
M5
M6

999

998

997

996
995

994 899

897

798

799

898

EXPERIMENTS
https://w

w
w.flickr.com

/photos/rivenim
agery/8359976129/

(still work in progress…)

https://www.flickr.com/photos/rivenimagery/8359976129/

OSTRICH IS FAST!	

50K+ JOBS SCHEDULED IN 0.04 SECONDS

we emulated a cluster head node on a normal PC

http://w
w

w.flickr.com
/photos/steveharris/245780134/

http://www.flickr.com/photos/steveharris/245780134/

IN PRODUCTION:
25K+ JOBS
SCHEDULED
SINCE JULY 2014
NO MAJOR
PROBLEMS
running on a cluster with	

262 nodes, 5056 cores, 
heterogeneous architecture	

(ICM: Warsaw Supercomputing Center	

site report tomorrow at14:05)

HOW GOOD IS THE
ALGORITHM FROM USERS’
PERSPECTIVE?
tests on a simulator 	

using recorded logs 	

from Dror Feitelson’s archive

OSTRICH IS MORE EFFICIENT THAN
FAIRSHARE (FOR SOME LOGS !)

Log from ANL Thunder BlueGene/P, 160k cores, 0.9x time compression

slowdown ≤ 5

for ~95% of campaigns

(perfect estimates)

(estimated runtime: avg 2 last jobs)

THE MORE CAMPAIGN-LIKE THE
LOG, THE LARGER THE DIFFERENCE

Log from ANL Thunder BlueGene/P, 160k cores, 0.8x time compression,	

jobs submitted during 30 minutes grouped and submitted together

~10% more jobs with stretch≤5	

for perfect runtime estimates

~10% more jobs with stretch≤5	

for standard runtime estimates

FOR SOME LOGS, OSTRICH IS
WORSE THAN FAIRSHARE

LLNL Thunder, 4k cores	

0.95x time compression, 30 minutes job groups

CONCLUSIONS

http://w
w

w.flickr.com
/photos/gravityw

ave/91460440/

http://www.flickr.com/photos/gravitywave/91460440/

CONCLUSIONS
• OStrich guarantees that the slowdown of each campaign

(burst submission) is proportional to the number of users in
the system	

• OStrich maintains a virtual, fair-share schedule	

• We have a SLURM scheduling plugin and a simulator
available for download: github.com/filipjs/	

• with the simulator you’re able to test the performance on
your workload before running in production	

• OStrich can use existing configuration (shares) from multi-
factor plugin

ACKNOWLEDGEMENTS
• Work inspired by a problem suggested by Jarosław Żola (SUNY Bufallo)	

• The algorithm developed with Vinicius Gama Pinheiro (U. Grenoble)
and Denis Trystram (U. Grenoble)	

• Joseph Emeras contributed to the experimental evaluation of an earlier
version of the algorithm	

• Marcin Stolarek and other brave sysadmins from ICM (Warsaw
Supercomputing Center) agreed to manage their machines with our
scheduler!	

• Work supported by Polish National Science Center UMO-2012/07/D/
ST6/02440

http://w
w

w.flickr.com
/photos/kapkaupunki/311055670/

Thanks and... embrace the OStrich!
Krzysztof Rzadca, krzadca@mimuw.edu.pl

mimuw.edu.pl/~krzadca/ostrich/

http://www.flickr.com/photos/kapkaupunki/311055670/

