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KEY MESSAGE: A FAIR, MULTIUSER 
ONLINE SCHEDULING ALGORITHM

• Online problem with multiple users sharing a supercomputer	



• Workload composed of campaigns (~job arrays): jobs independent to 
execute; the owner wants to finish all jobs as soon as possible	



• OStrich: an algorithm with a guarantee on worst-case slowdown 
(stretch) for each user (OStrich ~ per-User Stretch)	



• The slowdown depends on the total number of users, and not the 
total system load	



• Implementation as a SLURM scheduler used in a production cluster 



MODEL: A TYPICAL 
SUPERCOMPUTING CENTER	
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WHY CAMPAIGNS?

• Modern applications submit many related computing jobs	



• Map/Reduce	



• parameter sweep workflows	



• SLURM makes such submissions easier by job arrays  
(max job array size increased to 1M, so it’s useful)	



• But cluster schedulers treat such jobs as independent



WHY A WORST-CASE BOUND 
FOR EACH USER?

• Many policies based on First-Come-First-Served	



• New jobs are put at the end of the queue	



• Thus, users with large workloads slow down everyone else	



• Hard to manage partial solutions:	



• Limits on number of jobs in the queue, 	



• Karma points, priority queues, etc.	



• Fair-share



A CAMPAIGN:  
A BAG OF INDEPENDENT TASKS

user 1: campaign 1
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PRINCIPLE OF THE ALGORITHM: 
PARETO-OPTIMALITY

M1
M2
M3
M4
M5
M6

10

10 10

10

M1
M2
M3
M4
M5
M6

10

1010

a fair-share schedule a Pareto-optimal schedule

completion times:	


(20,20)

completion times: 	


(10,20)

10

t t



PRINCIPLE OF THE ALGORITHM: 
OPTIMIZE SLOWDOWN  
(BUT NO STARVATION)
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OSTRICH ALGORITHM: 
A VIRTUAL FAIR-SHARE SCHEDULE  

DEFINES PRIORITIES FOR CHOOSING JOBS
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OSTRICH ALGORITHM: 
NEW SUBMISSIONS “PREEMPT” 

CURRENTLY EXECUTING CAMPAIGNS
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OSTRICH ALGORITHM: 
NEXT CAMPAIGN DEFERRED UNTIL 

PREV CAMPAIGN VIRTUAL COMPLETION
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OSTRICH ALGORITHM: 
NEXT CAMPAIGN DEFERRED UNTIL 

PREV CAMPAIGN VIRTUAL COMPLETION
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SOME PROOFS?

http://w
w

w.supercoloring.com
/

http://www.supercoloring.com/wp-content/main/2010_08/Ostrich-head-in-sand-coloring-page.gif


AN UPPER BOUND ON THE 
CAMPAIGN’S COMPLETION TIME
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EACH CAMPAIGN’S 
SLOWDOWN IS BOUNDED

• campaign slowdown: flow time weighted by the surface 
 

• OStrich guarantee: 
 
 

• k is the number of active users	



• we treat pmax as constant (and small compared to campaign’s 
surface)  



IMPLEMENTATION IN SLURM



FROM THEORY TO SLURM
• fixed reservations: as idle time	



• partitions: as (perhaps overlapping) sets of processors	



• users’ estimates are imprecise: simple estimates can be used 
(not yet implemented!) (in simulations we use the average 
from 2 last completed jobs )	



• campaign from a stream of jobs: we group jobs based on delay 
from the first submission	



threshold this job starts a new campaign

3 jobs in a single campaign



A SEMI - ACTIVE SCHEDULER
• OStrich is notified about a newly submitted job;  

assigns 0 priority to this job	



• each 1-10 seconds, OStrich recalculates the virtual schedule  
(new jobs, completed jobs, changed jobs)	



• OStrich assigns decreasing priorities to jobs by campaign 
order	



!

!

• the main SLURM daemon uses priorities to order jobs for 
FCFS/backfill
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EXPERIMENTS
https://w

w
w.flickr.com

/photos/rivenim
agery/8359976129/

(still work in progress…)

https://www.flickr.com/photos/rivenimagery/8359976129/


OSTRICH IS FAST!	


50K+ JOBS SCHEDULED IN 0.04 SECONDS

we emulated a cluster head node on a normal PC

http://w
w

w.flickr.com
/photos/steveharris/245780134/

http://www.flickr.com/photos/steveharris/245780134/


IN PRODUCTION:
25K+ JOBS 
SCHEDULED 
SINCE JULY 2014 
NO MAJOR 
PROBLEMS
running on a cluster with	


262 nodes, 5056 cores, 
heterogeneous architecture	


(ICM: Warsaw Supercomputing Center	


site report tomorrow at14:05)



HOW GOOD IS THE 
ALGORITHM FROM USERS’ 
PERSPECTIVE?
tests on a simulator 	


using recorded logs 	


from Dror Feitelson’s archive



OSTRICH IS MORE EFFICIENT THAN 
FAIRSHARE (FOR SOME LOGS !)

Log from ANL Thunder BlueGene/P, 160k cores, 0.9x time compression

slowdown ≤ 5

for ~95% of campaigns

(perfect estimates)

(estimated runtime: avg 2 last jobs)



THE MORE CAMPAIGN-LIKE THE 
LOG, THE LARGER THE DIFFERENCE

Log from ANL Thunder BlueGene/P, 160k cores, 0.8x time compression,	


jobs submitted during 30 minutes grouped and submitted together

~10% more jobs with stretch≤5	


for perfect runtime estimates

~10% more jobs with stretch≤5	


for standard runtime estimates



FOR SOME LOGS, OSTRICH IS 
WORSE THAN FAIRSHARE

LLNL Thunder, 4k cores	


0.95x time compression, 30 minutes job groups



CONCLUSIONS

http://w
w

w.flickr.com
/photos/gravityw

ave/91460440/

http://www.flickr.com/photos/gravitywave/91460440/


CONCLUSIONS
• OStrich guarantees that the slowdown of each campaign 

(burst submission) is proportional to the number of users in 
the system	



• OStrich maintains a virtual, fair-share schedule	



• We have a SLURM scheduling plugin and a simulator 
available for download: github.com/filipjs/	



• with the simulator you’re able to test the performance on 
your workload before running in production	



• OStrich can use existing configuration (shares) from multi-
factor plugin
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Thanks and... embrace the OStrich!
Krzysztof Rzadca, krzadca@mimuw.edu.pl

mimuw.edu.pl/~krzadca/ostrich/

http://www.flickr.com/photos/kapkaupunki/311055670/

