
NHC TUTORIAL

Presented by
Jacqueline Scoggins

Lawrence Berkeley National Lab
Berkeley, California

SchedMD 2014 September 23, 2014

WHO ARE WE?

National Laboratory Bringing Science
Solutions

to the world

HISTORY OF NHC

 Written and developed by Michael Jennings at
Lawrence Berkeley National Lab starting in 2010.

 NHC is a subproject of the Warewulf system
management suite. But warewulf core packages
are not required for it to work.

 Originally written for Torque’s node health check
infrastructure but has expanded to Slurm and
other resource managers.

 It is written in Native Bash and has over 40 built-in
functions to choose from that can check various
components of a nodes health

 Prevent queued jobs from running on unhealthy

node(s)

 Works with the resource manager to control the
state of a node outside of scheduler related
issues – hardware problems, mount issues,
misconfiguration of nodes, etc.

 A simple and modular solution that can do
multiple checks and report the reason why the
node is unhealthy through multiple mechanisms.

BENEFITS OF USING NHC

 Keeps administrators aware of nodes

that are unhealthy

 Ease of Use

 Shell scripts – just straight BASH

 Built-in scripts for immediate use

BENEFITS OF USING NHC
(Cont’d)

CONFIGURING NHC ON A NODE

 NHC should be installed on every node
 Configuration file - /etc/nhc/nhc.conf (default)

(all nodes should have the same copy – no need to create a separate
one on each node)

 Script files - /etc/nhc/scripts/*.nhc
 Scheduler/helper scripts - /usr/libexec/nhc
 Shell script - /usr/sbin/nhc

 Test it locally on a node and then integrate it into
the scheduler
 Simple test - just run /usr/sbin/nhc with no parameters
 Review test - view the log file - /var/log/nhc.log

CONFIGURATION FILE - /etc/nhc/nhc.conf

 Field 1: Contains a target specifier
 Three separate methods for specifying target (nodes)

 Glob - *
 Regexp – /^n00[0-5][0-9]\.jbs2$/
 Node range expressions - {n00[00-10].clustername}

 Separator string - ||

 Field II: Health check directive (or other command)
 9 Filesystem check functions
 2 Command check functions
 3 Files check functions
 10 Process check functions
 Numerous different Hardware check functions

WHAT ARE SOME OF THE BUILT-IN CHECKS?

 Command Execution – run any command and check
the results

 # check within 1 second and return the status from service
command

 check_cmd_output –t 1 –r 0 –m ‘/is running/’ /sbin/service
rpcbind status

 Filesystems – checks various things like is it
mounted, are the permissions correct,
inode count, space consumed or free

 # checks that root is mounted read-write

 check_fs_mount_rw -f /

WHAT ARE SOME OF THE BUILT-IN CHECKS?

 Hardware – cpu, ethernet, infiniband, nvidia, myrinet,
 mcelogs, memory, swap, load average

 # check that eth0 is available

 check_hw_eth eth0

 Processes – blacklist, cpu consumed, daemon,
memory usage, existence (status), time
used, unauthorized users (user not
running job on the node**), rogue processes

 # check that sshd is running as the root user and start it if it is
not (-S)

 check_ps_service –S –u root sshd

** only works for single node jobs.

EXAMPLE NHC.CONF
 * || export PATH="$PATH:/opt/nv/bin"
 * || check_fs_mount_rw -t ‘/(ext4|tmpfs)/’ -f / -f /tmp -f /local
 * || check_fs_mount_rw -s ‘/^nas:\/(home|soft)/’ -f /home -f /soft
 * || check_fs_mount_ro -o ‘/(^|,)vers=4(,|$)/’ -f /var/chroots
 * || check_ps_service -u root -S sshd
 * || check_ps_service -u root -r crond
 * || check_ps_service -u daemon -d munged -r munge
 * || check_file_test -r -w -x -d -k /tmp /var/tmp
 * || check_file_test -c -r -w /dev/null /dev/zero
 * || check_file_contents /etc/passwd “/^root:x:0:0:/” “sshd:*”
 node* || check_ps_service -u root -d slurmd -r slurm
 node* || check_ps_userproc_lineage log syslog
 node* || check_hw_cpuinfo 2 20 20
 node* || check_hw_physmem 64GB 64GB 3%
 node* || [-x “$NVIDIA_HEALTHMON”] && check_nv_healthmon || continue
 master* || check_fs_free / 10%
 master* || check_fs_used /home 97%
 master* || check_fs_ifree /biodata 20k
 master* || check_ps_service -u slurm -d slurmctld -r slurm
 master* || check_ps_service -u slurm -r slurmdbd
 master* || check_hw_cpuinfo 2 12 12
 master* || check_hw_physmem 32GB 32GB 3%
 master* || check_hw_swap 18GB 18GB 3%
 master* || check_cmd_output -m ‘/10\.0\.0\.1/’ -m ‘/eth1.*,UP/’ ip addr
 master* || check_dmi_data_match -t “BIOS Information” “/Revision: 4\.[3-7]/”

HOW IS IT INTEGRATED IN THE
SCHEDULER?

 The scheduler (SLURM) is set up to use NHC by
setting the parameter in /etc/slurm/slurm.conf

 HealthCheckProgram= location of the script
to execute the checks (default: /usr/sbin/nhc)

 HealthCheckInterval = seconds (the number
of seconds between executions of the health
check program)

 HealthCheckNodeState = state of the node to
execute the script on

SCHEDULER INTERACTION

 NHC is configured to know which Resource Manager
the system is running and which commands to run to
communicate with the scheduler

 Parameters settings and location
 nhc.conf - export NHC_RM=slurm (should not be

needed)
 node-mark-[off|on]line - 2 variables

 SLURM_SINFO (sinfo)
 SLURM_SCONTROL (scontrol)

NHC INTERACTIONS VIA THE SCHEDULER

sinfo is used to check the existing state of the node
before performing any Actions

Current node message is read to know if NHC
already took the node offline or if the admin had the
node offline (sinfo –o ’%t %E’ –hn nodename)

Parameters defined in (/etc/nhc/nhc.conf)
$IGNORE_EMPTY_NOTE
1 - do not ignore (we choose this because all
offline nodes need to have a message as to why
they were offlined)
0 - ignore (default)

NHC INTERACTIONS VIA THE SCHEDULER
By default, NHC will automatically run node-mark-
offline if the node fails a check, or node-mark-online if
the node passes all the checks.

Each helper script determines what if any commands
to run.

The variable $STATUS contains the current state of a
node, and based on its value certain actions can occur
to a node via the scheduler.

The following are the node states which are valid in
slurm - down, idle, drain, alloc, resume, undrain,
offline, unknown, comp, failed, mixed

NHC INTERACTIONS VIA THE SCHEDULER

SLURM ACTIONS

scontrol update State=DRAIN NodeName=hostname
Reason=“NHC: failure error message”

 if node is already down by NHC or any reason do nothing
 if node is already offline by Admin perserve the message
 if node is online but unhealthy mark it offline and report the
reason

scontrol update State=Resume NodeName=hostname
 if node is down by NHC and the error is fixed bring it back
online and remove the Reason
 if node is down by admin leave it down and do nothing

HINTS FOR WRITING CHECKS

 Whenever possible, use native bash constructs
 Read Name < /some/file instead of NAME=`cat file`

read HOSTNAME < /proc/sys/kernel/hostname

 ${VAR/[/]pattern/replacement} instead of sed

HOSTNAME_S=“${HOSTNAME/%.*}”

CLUSTERNAME=“${HOSTNAME/#$HOSTNAME_S.}”

i.e. - Hostname=n0000.jar.gov Hostname_S = n0000 Clustername=jar.gov

 Read/split data using IFS and arrays instead of awk

 Redirection to loops instead of pipelines

IFS=‘:’

while read –a LINE; do

 PW_USER=“${LINE[0]}”

 PW_UID=“${LINE[1]}”

done < /etc/passwd

COMING SOON
 nhc-wrapper

 Run nhc in a loop with a specified interval; and/or,
 Notify via e-mail on failure or when failure is cleared;

and/or,
 Cache results from previous NHC run and expire cache

after specified time period

 nhc-genconf
 Uses built-in NHC information-gathering functions to scan

system
 Generates configuration file based on hardware,

filesystems, etc. found on system
 Customizable hostmask for generated configuration file for

use with, e.g., dshbak

 More checks: SLURM diags, sockets/open files, “rolling”
reboots/scripts

WAREWULF NHC - QUICK START

Test NHC execution and command

nhc
echo $?
cat /var/log/nhc.log

Configure SLURM to run NHC
vi /etc/slurm/slurm.conf
HealthCheckProgram=/usr/sbin/nhc
HealthCheckInterval=300
HealthCheckNodeState=ANY
/etc/init.d/slurm restart

DOWNLOAD and INSTALL NHC RPM
http://warewulf.lbl.gov/downloads/releases/warewulf-nhc
/

rpm –ivh warewulf-nhc-1.4.el6.noarch.rpm
(prepackaged for RHEL5 and 6)

http://warewulf.lbl.gov/downloads/releases/warewulf-nhc/
http://warewulf.lbl.gov/downloads/releases/warewulf-nhc/

CONTACT INFORMATION

WareWulf NHC
warewulf-devel@lbl.gov
mej@lbl.gov (Developer)

http://go.lbl.gov/nhc (documentation)

Jacqueline Scoggins
jscoggins@lbl.gov
(510) 486-8651

mailto:warewulf-devel@lbl.gov
mailto:mej@lbl.gov
mailto:jscoggins@lbl.gov

QUESTIONS?

ANSWERS TO NHC QUESTIONS YESTERDAY

1. How to prevent an offline node from coming back
online if you wish to leave it down

* || ONLINE_NODE=: check_hw_ib 56 ib0

2. Statistics

 No statistics are gathered but it’s in the
thousands of times, if not tens of thousands
3. Epilogue scripts

If a node goes down it requires manual
intervention to restore the node to service. This
mechanism is also incompatible with detach mode
(which is what nhc is about) It can be used in this
manner but we choose not to do it this way.

	Slide 1
	Who are we?
	History of NHC
	
	
	Configuring NHC on a node
	CONFIGURATION FILE - /etc/nhc/nhc.conf
	What are some of the built-in checks?
	What are some of the built-in checks?
	Example nhc.conf
	How is it integrated in the scheduler?
	Scheduler Interaction
	NHC InterACTIONS via the scheduler
	NHC INTERACTIONS via the scheduler
	NHC INTERACTIONS via the scheduler
	Hints for writing checks
	coming soon
	Warewulf nhc - quick start
	Contact Information
	QUESTIONS?
	ANSWERS TO NHC QUESTIONS YESTERDAY

