
SLURM USER GROUP MEETING 2014, SEP. 23-24TH LUGANO

Budget Checking Plugin for SLURM

Huub Stoffers huub.stoffers@surfsara.nl

HPC systems expert, project lead Cartesius Supercomputer

In production

since June 2013

Replaced

IBM P6

First,

and so far only,

system at

our site to use

SLURM

mailto:huub.stoffers@surfsara.nl

Outline of this presentation

Ideas on strict budget checking applied right before job dispatching in SLURM,

with elements of a site presentation mixed in:

• A brief overview of the compute facilities

• Some aspects of the SLURM configuration on Cartesius:
- The partitioning applied to the system, and how that fits our needs
- QOS policies that, in addition to the partition attributes, also act as partition resource usage limits

• Accounting at SURFsara:
- The basis on which users are granted access and how budgets to use resources are determined
- The tracking of their resource usage – that is done pretty well by SLURM
- “Pricing” of resources, or how the resource usage is reduced to “SBU” deductions from project budgets
- Budget restitution decisions and other events, that are not directly in view of the batch system, that can

affect the remaining budget of a project “from the outside”

• ‘live’ budget checking on top of the configuration:
- What we have in place for that right now
- why that implementation is not good enough
- What sort of “logic” would be more efficient and scalable
- our ideas on how to implement it in the context of the SLURM environment

SLURM User group meeting 2014, Sep. 23-24th Lugano

(SURF)sara National Supercomputing History

SLURM User group meeting 2014, Sep. 23-24th Lugano

Year Machine batch
Rpeak

GFlop/s
kW

GFlop/s
/ kW

1984 CDC Cyber 205 1-pipe 0.1 250 0.0004

1988 CDC Cyber 205 2-pipe 0.2 250 0.0008

1991 Cray Y-MP/4-128 NQS 1.33 200 0.0067

1994 Cray C98/4-256 NQS 4 300 0.0133

1997 Cray C916/12-1024 NQS 12 500 0.024

2000 SGI Origin 3800 LSF 1,024 300 3.4

2004 SGI Origin 3800 + Altix 3700 LSF 3,200 500 6.4

2007 IBM p575 Power5+ LL 14,592 375 40

2008 IBM p575 Power6 (104 nodes) LL 62,566 540 116

2009 IBM p575 Power6 (108 nodes) LL 64,973 560 116

2013 Bull bullx B710 (DLC) + R428 SLURM 270,950 245 1106

2014 + Bull bullx B515 (NVIDIA K40m) SLURM 210,000 44.4 4729 (!)

2015 Bull bullx ‘complete system’ SLURM >1,400,000 >700 >2000

Other HPC systems at SURFsara

(SURF)sara has always hosted and managed other HPC and “Big Data” facilities,

 besides the Dutch national supercomputer

• Systems for specific communities:
- LISA  VU + UvA + NWO
- Grid  National Life Sciences Grid + BigGrid + EGI

• Systems tuned to a special purpose:
- Hadoop cluster
- Visualization render cluster
- HPC cloud
- Multi-petabyte (tape) archive facility

• Some share a common user administration with the national super computer

• Facilities have their own independent scheduling and/or resource reservation systems

• Resource usage records post-processed by the central SURFsara accounting server

• LISA is closest to Cartesius in mode of operation, but uses Torque

SLURM User group meeting 2014, Sep. 23-24th Lugano

Cartesius phase 1

(June 2013 – June 2014)

SLURM User group meeting 2014, Sep. 23-24th Lugano

Cartesius phase 1 + GPU Island

(June 2014 -)

SLURM User group meeting 2014, Sep. 23-24th Lugano

GPU-direct support,

different ofed stack

Still one cluster

for SLURM

Cartesius phase 2 + GPU island

(November / December 2014 -)

SLURM User group meeting 2014, Sep. 23-24th Lugano

SLURM configuration on Cartesius (1/2)

We try to keep resource usage limits and job prioritizing simple:

• Basic scheduling, First In First Out, with backfilling

• No preempting and suspending of running jobs

• No fair share rules – we would not know how to define what is “fair”
- Fair with respect to users, or with respect to accounts?
- Fair with respect to short term usage or with respect to with respect to the size of a project and what is

supposed to do within its lifetime?

• No more resource usage limits than necessary

• Just try to prevent that one account (project) can monopolize the usage of a particular
system

• Add more rules and policies when it turns out they are needed

SLURM User group meeting 2014, Sep. 23-24th Lugano

SLURM configuration on Cartesius (2/2)

Partitions

SLURM User group meeting 2014, Sep. 23-24th Lugano

• 16 TCNs and 2 GCNs are in their respective “short” partition to ensure that there are always
some nodes available for short test runs within an hour

• We use a MaxNodesPerUser “sacctmgr” limit, via a QOS per partition. We would rather have
it per Account though

• Not all users have access to all partitions. We use “sacctmgr” associations to grant/limit
access

Partition # Nodes Node usage MaxNodes MaxTime

(min.)

MaxNodesPU

(QOS)

Normal All TCNs -16 Exclusive 360 7200 360

Short All TCNs Exclusive 480 60 480

Fat All FCNs Exclusive 16 7200 48

Staging All SRVs Shared 1 7200 N.A.

GPU All GCNs – 2 Exclusive 48 7200 48

GPU_short All GCNs Exclusive 64 60 64

Accounting at SURFsara (1/5)

Nowadays there are two ways to get access and a budget:
1. Write a proposal and get it approved by the NWO council
2. Since a few years also, via PRACE, write a DECI proposal

• We are expected to take care that projects get what they need, that they can spend the budget
granted …

• … but also that they cannot use more than they were granted – the council deems overspending
inadmissible

• Putting a price on resource is very site specific:

• Budgets are in terms of abstract core hours or “System Billable Units” (SBUs)

• Core hours of TCNs, FCNs, and SRVs have the same “price” of 1 SBU, but core hours on GCNs
cost 3 SBUs:

SLURM User group meeting 2014, Sep. 23-24th Lugano

Node

type

Node resource “package” Whole nodeSBUs /

wall clock hour

TCN 24 cores, 2 GiB/core 24

FCN 32 cores, 8 GiB/core 32

SRV 16 cores, 2 GiB/core + high perf. external network connectivity 16

GCN 16 cores, 6 GiB/core + 2 K40m GPUs 48

Accounting at SURFsara (2/5)

SLURM User group meeting 2014, Sep. 23-24th Lugano

• Pilot projects may get 100,000 – 200,000 SBUs

• Small projects get several 100,000 SBUs

• Large projects get several 1,000,000 of SBUs

• Ultimately also large projects will have little budget left …

• … But it is unwieldy, if doable at all, to dynamically adjust limits per project

while budget is being spent …

System Economic capacity in

SBUs per day

Current system (Phase 1 + GPUs) > 410,000

Complete system (Phase 2) > 1,030,000

Economic capacity of the machine and project size,

given the chosen “pricing”

Accounting at SURFsara (3/5)

• Rather keep track of the budget, however SLURM records job resource usage, but is not

aware of SBU budgets and “pricing” …

• … But a central accounting server is

• Every 24 hours a “sacct” query is run, and a new batch of job records, that have completed

since the last previously sent job record, is sent to the central accounting server

• The central accounting server processes the batch of records, converts resource usage into

job cost in terms of “SBUs” and deducts that from budgets accordingly.

• Since jobs continuously spend while running, which can be up to five days, and post-

processing is done only after the fact, when the job is done, budget adjustment at the central

accounting server might be too late – when gross overspending has already happened.

• Other events, besides post-processing job records, may affect the remaining budget …

SLURM User group meeting 2014, Sep. 23-24th Lugano

Accounting at SURFsara (4/5)

• The central accounting server has an administrative (web)interface with

several options for “bookkeepers”:

- Initialization of new projects, accounts

- expiration of old projects – reducing the budget to 0

- Budget restitution for jobs for various reasons

- Transfer of budget from one project to another may also be a legitimate action in

some cases

• Cartesius runs an hourly cron job to retrieve updated account and associated

budget state information from the central accounting server

- To adapt “sacctmgr” accounts and associations of accounts and users with

partitions to new projects and to the expiration of old ones

- To make use of in a budget check that is run at job dispatch time, in the

SLURMctld prolog

 SLURM User group meeting 2014, Sep. 23-24th Lugano

Accounting at SURFsara (5/5)

SLURM User group meeting 2014, Sep. 23-24th Lugano

Current budget check implementation (1/2)

• A script that is called by SLURMctld prolog

• Job cost functions for all node types are hardcoded into the script

• The script determines the remaining budget from cached, hourly refreshed, data
retrieved from the accounting server

• From these data It also determines the effective timestamp of the remaining budget,
i.e.: the latest end time of jobs already post-processed by the accounting server and
hence already deducted from the budget

• It calls “sacct” to retrieve all jobs that have finished since the last post-processed job

• It calculates the actual job cost of all these jobs, on the basis of their actual resources
and actual runtime, and deducts this amount from the budget

• It calls “squeue” to retrieve all running, still unfinished, jobs of the account including
the job in in the process of being dispatched to run

• It calculates the maximum job cost of these unfinished jobs on the basis of their actual
resource allocation and their maximum runtime, and deducts this amount from the
budget too

• If the resulting budget is zero or negative, the job is cancelled, otherwise it runs

 SLURM User group meeting 2014, Sep. 23-24th Lugano

Current budget check implementation (2/2)

• In principle it works well, correctly

• But it is not very efficient and hence not very scalable

• It results in a lot of “squeue” and “sacct” queries

• Each successive job dispatch retrieves the same data over and over again, that are only

slightly incremented and changed with information of meanwhile finished and newly

dispatched jobs

• And it recalculates the same job cost over and over again

• Towards the moment of send post-processing a new batch of job records by the accounting

server the work to be done by the check is ever increasing

• On “really bad days” it does not work at all and can even get the SLURMctld into trouble:

• Bad days are:

• When there are a lot of “farmers”, running many small short jobs

• When, in addition, there are some moments at which many such jobs can be dispatched at

virtually the same time many squeue and sacct queries retrieving huge record sets will run in

parallel.

SLURM User group meeting 2014, Sep. 23-24th Lugano

A better organization (1/3)

• Split the work, cache and keep track of the remaining account budgets

• Do the work that the current script does only once for per account to produce something like this:

 struct budget_state {

 char *accountname;

 time_t timestamp;

 long base_budget;

 long remaining_budget;

 };

• Keep it somewhere were you can do atomic “transactional” updates on the record:

- Two times per job: viz. at dispatch time, and at completion time

• Originally I thought the SLURM “sacct” database should be extended hold such records, but it could be
some file governed with e.g. ioctl(2) locking, or any other mechanism that avoids race conditions when

updating the remaining budget.

SLURM User group meeting 2014, Sep. 23-24th Lugano

A better organization (2/3)

• long jobcost(job_info_msg_t *jobinfo, int mode);

• Calculates either worst case or actual job cost, depending on mode, on the basis of the
jobinfo record and site specific “pricing” rules.

• int init_budget_state(long base_budget, time_t timestamp, char

*accountname);

• Do at sacct –S timestamp –A accountname sort of query, to retrieve every job of account

accountname that has started since timestamp; In the list retrieved, there may be finished

and unfinished jobs.

• Call jobcost with the respective mode for finished and unfinished job to. calculate the

remaining budget and update an budget_state record

• int jobdispatch_chk(uint32_t jobID, char *accountname);

• Run at “prolog time”

• int jobcomplete_chk(uint32_t jobID, char *accountname);

• Run at “epilog time”

 SLURM User group meeting 2014, Sep. 23-24th Lugano

A better organization (3/3)

• At prolog time
- Use a slurm_load_job()query to get data to calculate the maximum job cost only of the job being

dispatched

- “atomically”:

- {

- subtract the maximum job cost from the account’s remaining budget

- If this brings the remaining budget below zero, cancel the job and do not update remaining budget

- If not, then update the remaining budget with the subtracted maximum job cost

}

• At epilog time
- Use a slurm_load_job()query to get data to

- calculate the actual job cost of the completing job

- (re)calculate the maximum that was subtracted at dispatch time

- “atomically” add the difference between maximum and actual job cost to the remaining budget

• Only if an external event changes the base budget, by cronjob getting fresh information from

the accounting server, throw away the cached budget_state and start anew by complete

recalculation, i.e. by reusing the init_budget_state routine.

SLURM User group meeting 2014, Sep. 23-24th Lugano

