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Who We Are – a Little History

MIT Building 20

Mission: Development of radar systems and technology   

Main projects: Surveillance radar
Fire control radar
Navigation systems

SCR-584

4000 employees
Designed half of all US WWII radars

Est. 1951: Air defense and technology development
Main projects: Semi-Automatic Ground Environment (SAGE)

Major Innovations:

Real-Time 
Computing Magnetic-core

Memory
Light-pen CRT 

Interface
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Research And Development

Mission: Development of radar systems and technology   
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History of Supercomputing at Lincoln Laboratory

1950 1960 1970 1980 1990 2000 2010

1951 Whirlwind 

1953 Magnetic-Core 
Memory Array

1956 TX-0

1958
• AN/FSQ-7 (Whirlwind II)
• Average Response Computer (ARC)
• CG-24
• TX-2 

1962 Lincoln Instrument 
Computer (LINC)

1963 Sketchpad

1970 Fast Digital 
Processor (FDP)

Early 1990s
• APT processor
• RAPTOR processor
• Space-Time Adaptive 

Processing Library 
(STAPL)

1999 Parallel 
Vector Library 
(PVL)

2002  
• ISR Processing and 

Array Technology 
(IPAT) processor

• MatlabMPI

2003 pMatlab

2004
• pMapper 

gridMatlab
• LLGrid TX-2500

2007
• Parallel Vector 

Tile Optimizing 
Library (PVTOL)

• Real-Time 
Communication 
Layer (RTCL)

2004 Knowledge-Aided Sensor 
Signal Processing and expert 
Reasoning (KASSPER) processor

2014 LLGrid 
TX-Green

Late 1970s High-speed 
FFT pipelined processor

1974 Lincoln Digital 
Voice Terminal (LDVT)

1977 : Lincoln 
Digital Signal 
Processor (LDSP)

1978 Micro-Processor 
Based LPC Vocoder 
(LPCM)

1982 Compact 
LPC Vocoder

2016 Lincoln Laboratory 
Supercomputing Center (LLSC)

1992 Radar Surveillance 
Technology Experimental 
Radar (RSTER) processor1970 GENESYS

2012 D4M

2015
BigDAWG
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Approach
– LLSC develops and deploys 

unique, energy-efficient high 
performance computing that 
provides
• Integrated HPC and Big Data 

capabilities
• Data centers, hardware, 

software, and user support 
• 100X more productivity than 

standard HPC 
• 100X better performance than 

standard Cloud providers

Carbon-free power

LLSC Approach

Diverse Locations
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• Significant increase in computing power for 
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Largest AI System at any University in the World

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 4.7 Petaflops (#32 in World*)

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops (#6 in World*)

Network Link Intel OmniPath 25 GB/s

Largest zero 
carbon 

emission 
system

in Top500

Supercomputer Upgrade & EcoPOD II

*Based on 2018 Top500.org                            AI Flops = 4x4 matrix multiply half precision in, single precision out
(mixed precision training)
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Service Nodes Compute Nodes 

Scheduler

Network Storage 

LAN Switch 

Cluster Switch

Monitoring System

• LLSC provides a software platform that allows users to
– Launch interactive compute jobs from their desktop
– Share large volumes of project data

• The LLSC experience provides
– Reference datasets pre-positioned in databases
– Software modules and training to reduce user ramp up up time

LLSC Advantage: Interactive Supercomputing

Interactive Compute Job

Interactive VM Job

Interactive Database Job
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Unique Interactive Supercomputing Capabilities

Parallel MATLAB: world’s most 
productive parallel computing 

environment

Interactive Hardware: get a 
processor core or a 

whole node

Jupyter Notebook: 
web-based IDE & more

LLMapReduce: parallel data 
analysis in any language with 

one line of code

Dynamic Databases: manage 
world’s most powerful databases 

from a GUI

Dynamic Web Services: start an 
authenticated web-service
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MIT SuperCloud Portal

George
Passw0rd

https://.../gridsan/

gridsan/
db/
vm/
jupyter/

George

Files

fw/forward-name/

dbfw/database-name/

mod_dav_fs

https://.../db/https://.../fw/https://.../dbfw/https://.../fw2/

fw2/node:port/
User is the same UID: 500UID: 501

Primary group is the same GID: 702GID: 501
Listener primary group matches 

one of the connector’s 
supplemental groups

SGIDs:
• 501
• 702

• System services exempt
• Users configured to be exempt

User-Based Firewall Rules
Connector Listener

User’s Desktop Portal Node HPC Compute Nodes and Central Storage
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LLSC System Monitoring Framework

Server Health Storage

ManagersSystem Administrators CS&E Team

Users

Sensors and 
Effectors

Scheduler Network Traffic Power CoolingOS Management Physical 
Security

Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar

Uniform Resource Identifier (URI)

Services

CS&E: Computational Science and Engineering
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Data Center Monitoring System Screen Shots

• Data center screen shows status of all EcoPOD 
systems and subsystems including

• Power distribution
• Temperatures and humidity
• Fans and air conditioners

• Nodes screen shows status of all login and 
compute nodes, storage nodes, and network 
switches

• Nodes are shown in rack positions
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Slurm Experience at LLSC

• Slurm 15.08.8 
– Several QoS: normal, pmatlab, high, db, and gpu
– LUA job_submit plugin

• To enforce various requirements for jobs

– Multi-factor priority scheduling
– SPANK Plugin - X11 forwarding & TMPDIR

• Slurm 15.08.8 -> Slurm 16.05.10
– Job array task dependency, “aftercorr”

• Slurm 16.05.10 -> Slurm 17.11.7
– Native X11 forwarding support

• Slurm 17.11.7 -> Slurm 19.05.x (in progress)
– Better support for GPU resources
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Implementation Considerations

• Three separate partitions for different node types/work loads
– Normal: General compute jobs (including DB services)
– Manycore: Large simulations
– GPU: Machine-Learning/AI jobs

• Support for resource management enforcement at partition level
– User limit on resources 

• CPU: able to set different core/job slot limits within each partition

• GPU: number based on availability and user demand

• Memory:  supports Linux OS CGROUPS kernel feature
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LUA job_submit Plug-in

• Enforce the default feature (used for CPU type) request if not specified  
• Set the highest QoS for interactive jobs

– With the highest QoS and multi-factor priority scheduling, interactive jobs are 
immediately scheduled

$ salloc --immediate --constraint=opteron srun --pty bash -i
salloc: error: Unable to allocate resources: Immediate execution impossible, insufficient priority

$ salloc --immediate --constraint=opteron --qos=high \
srun --pty bash -i

salloc: Granted job allocation 4109683

• Enforces GPU resource count to be 2 or 4 (Slurm recognizes one K80 as two K40s)
• GPU memory cleanup

– GPU memory is not cleared at the end of job 
– Epilog script clears the entire K80 memory
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SPANK Plug-in Module

• X11 forwarding  
– Used for applications requires a graphical user interface
– Limited to interactive jobs only

https://github.com/hautreux/slurm-spank-x11

– Switched to the native X11 forwarding support with Slurm

• Redirecting TMP/TMPDIR 
– A per-job temporary directory plugin creates a directory on a local filesystem and 

exports it in the TMPDIR environment variable 
– This provides similar behavior of the previous scheduler
– Useful for applications requiring a local filesystem

• At LLSC, Lustre parallel filesystem disabled file locking for performance

– Used for file-based message communication in gridMatlab for large scale parallel 
Matlab/Octave jobs1

1 Large Scale Parallelization Using File-Based Communications, Byun et. al, IEEE HPEC 2019

https://github.com/hautreux/slurm-spank-x11
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LLSC Resource Limit Enforcement

• Partition specific user association limits enforced
– normal partition: GrpTRES=cpu=512
– manycore partition: GrpTRES=cpu=8192
– gpu partition:  GrpTRES=cpu=56,gres/gpu:tesla=16

• Allows us to adjust the per-user limit if needed
– Users can request increased core limits for specified time periods
– For some cases, we need to enforce the memory limit as well 

• Caveat
– User account for each partition needs to be created to enforce the partition-specific 

user association limit

• Desired to handle a single user  account to enforce the partition-specific user 
association limit
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Immediate Job Support

• The immediate jobs (--immediate flag) are important to LLSC users
– Interactive, on-demand supercomputing resources for interactive jobs
– Database jobs
– Jupyter notebook jobs

• Multi-factor priority scheduling with a high-priority QoS 
– Configure slurm.conf for multi-factor priority scheduling
– Attach the high QoS to all immediate jobs

• Changes with low priority jobs to harvest idle resources
– When the cluster is full with low priority jobs, any immediate job submission is 

rejected
– Add a time delay with the --immediate flag for interactive jobs

• Time delay allows Slurm to pre-empt the low priority jobs before scheduling the immediate jobs

– sbatch command does not support time delay with the immediate flag 
• Implemented own logic to support SPOT (low-priority preemptable) jobs
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Tuning For Throughput Jobs

• Job Characteristics
– Majority of jobs are throughput jobs (array jobs)
– Small number of MPI jobs
– Tuning the scheduler for maximum throughput 

performance
• Tuned Parameters

– Started with the baseline high-throughput configuration 
https://slurm.schedmd.com/high_throughput.html

– Compared the throughput performance with the current 
and new parameters

SchedulerParameters=bf_interval=30,preempt_youngest_first,pack_s
erial_at_end,bf_busy_nodes,batch_sched_delay=10,bf_min_age_res
erve=600,bf_resolution=600,bf_continue,bf_yield_interval=1000000,s
ched_min_interval=2000000,max_rpc_cnt=200 
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• Machine Learning models require
– High level programming environments for 

building models
– Rapid interaction with analyst

• Standard approaches take minutes to 
hours to launch on thousands of cores

• MIT SuperCloud optimizes every aspect 
of HPML system to enable
– Launching hundreds of machine learning 

models in seconds
– 32,000+ cores (512 64-core Xeon nodes)
– Truly interactive machine learning

Interactive High Performance Machine Learning (HPML)
- Interactive Launch on 32,000+ Cores -
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Scalable System Scheduling for HPC and Big Data, Reuther et al,
Journal of Parallel and Distributed Computing, 2017
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• Some analytic applications are written 
uniquely for Microsoft Windows

• Standard approaches take hours to 
launch on thousands of cores
– VMs, Windows HPC, …

• MIT SuperCloud optimizes every aspect 
of launch system to enable
– 16,000+ Microsoft Windows environments 

(running WINE)
– 16,000+ cores (256 x 64-core Xeon nodes)
– Launched in 5 minutes
– 50+ launches/second
– 100x faster than standard approaches1

– Truly interactive supercomputing

Launching 16,000+ Microsoft Windows Environments
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1Interactive Launch of 16,000 Microsoft Windows Instances on a Supercomputer,
Jones et al, IEEE HPEC 2018
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Summary

• LLSC has been using Slurm for 3+ years
• LLSC has learned and exploited a number of features available to Slurm

– LUA job_submit plug-in
– SPANK plug-in module
– Association limit enforcement
– Multi-factor priority scheduling
– QoS
– Prolog/Epilog
– Advance reservation

• LLSC software stack with Slurm enables scaling up users’ applications
– Interactive High Performance Machine Learning 
– Microsoft Windows Environment via Wine


