
Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, Bill
Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones,

Anna Klein, Peter Michaleas, Julie Mullen, Andrew Prout, Antonio Rosa,
Siddharth Samsi, Charles Yee, Albert Reuther

MIT Lincoln Laboratory
SLURM User Group Meeting, September 17-18, 2019

Enabling and Scaling Diverse Work Loads Efficiently
With Slurm

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for

Research and Engineering.

Slide - 2

• Introduction

• LLSC Environment

• Slurm at LLSC

– Lua job_submit script

– SPANK plug-in module

– Resource limit enforcement

– Throughput tuning

• Summary

Outline

Slide - 3

Who We Are – a Little History

MIT Building 20

Mission: Development of radar systems and technology

Main projects: Surveillance radar
Fire control radar
Navigation systems

SCR-584

4000 employees
Designed half of all US WWII radars

Est. 1951: Air defense and technology development
Main projects: Semi-Automatic Ground Environment (SAGE)

Major Innovations:

Real-Time
Computing Magnetic-core

Memory
Light-pen CRT

Interface

Slide - 4

Research And Development

Mission: Development of radar systems and technology

Slide - 5

History of Supercomputing at Lincoln Laboratory

1950 1960 1970 1980 1990 2000 2010

1951 Whirlwind

1953 Magnetic-Core
Memory Array

1956 TX-0

1958
• AN/FSQ-7 (Whirlwind II)
• Average Response Computer (ARC)
• CG-24
• TX-2

1962 Lincoln Instrument
Computer (LINC)

1963 Sketchpad

1970 Fast Digital
Processor (FDP)

Early 1990s
• APT processor
• RAPTOR processor
• Space-Time Adaptive

Processing Library
(STAPL)

1999 Parallel
Vector Library
(PVL)

2002
• ISR Processing and

Array Technology
(IPAT) processor

• MatlabMPI

2003 pMatlab

2004
• pMapper

gridMatlab
• LLGrid TX-2500

2007
• Parallel Vector

Tile Optimizing
Library (PVTOL)

• Real-Time
Communication
Layer (RTCL)

2004 Knowledge-Aided Sensor
Signal Processing and expert
Reasoning (KASSPER) processor

2014 LLGrid
TX-Green

Late 1970s High-speed
FFT pipelined processor

1974 Lincoln Digital
Voice Terminal (LDVT)

1977 : Lincoln
Digital Signal
Processor (LDSP)

1978 Micro-Processor
Based LPC Vocoder
(LPCM)

1982 Compact
LPC Vocoder

2016 Lincoln Laboratory
Supercomputing Center (LLSC)

1992 Radar Surveillance
Technology Experimental
Radar (RSTER) processor1970 GENESYS

2012 D4M

2015
BigDAWG

Slide - 6

Approach
– LLSC develops and deploys

unique, energy-efficient high
performance computing that
provides
• Integrated HPC and Big Data

capabilities
• Data centers, hardware,

software, and user support
• 100X more productivity than

standard HPC
• 100X better performance than

standard Cloud providers

Carbon-free power

LLSC Approach

Diverse Locations

Slide - 7

• Significant increase in computing power for
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Largest AI System at any University in the World

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 4.7 Petaflops (#32 in World*)

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops (#6 in World*)

Network Link Intel OmniPath 25 GB/s

Largest zero
carbon

emission
system

in Top500

Supercomputer Upgrade & EcoPOD II

*Based on 2018 Top500.org AI Flops = 4x4 matrix multiply half precision in, single precision out
(mixed precision training)

Slide - 8

• Introduction

• LLSC Environment

• Slurm at LLSC

– Lua job_submit script

– SPANK plug-in module

– Resource limit enforcement

– Throughput tuning

• Summary

Outline

Slide - 9

Service Nodes Compute Nodes

Scheduler

Network Storage

LAN Switch

Cluster Switch

Monitoring System

• LLSC provides a software platform that allows users to
– Launch interactive compute jobs from their desktop
– Share large volumes of project data

• The LLSC experience provides
– Reference datasets pre-positioned in databases
– Software modules and training to reduce user ramp up up time

LLSC Advantage: Interactive Supercomputing

Interactive Compute Job

Interactive VM Job

Interactive Database Job

Slide - 10

Unique Interactive Supercomputing Capabilities

Parallel MATLAB: world’s most
productive parallel computing

environment

Interactive Hardware: get a
processor core or a

whole node

Jupyter Notebook:
web-based IDE & more

LLMapReduce: parallel data
analysis in any language with

one line of code

Dynamic Databases: manage
world’s most powerful databases

from a GUI

Dynamic Web Services: start an
authenticated web-service

Slide - 11

MIT SuperCloud Portal

George
Passw0rd

https://.../gridsan/

gridsan/
db/
vm/
jupyter/

George

Files

fw/forward-name/

dbfw/database-name/

mod_dav_fs

https://.../db/https://.../fw/https://.../dbfw/https://.../fw2/

fw2/node:port/
User is the same UID: 500UID: 501

Primary group is the same GID: 702GID: 501
Listener primary group matches

one of the connector’s
supplemental groups

SGIDs:
• 501
• 702

• System services exempt
• Users configured to be exempt

User-Based Firewall Rules
Connector Listener

User’s Desktop Portal Node HPC Compute Nodes and Central Storage

Slide - 12

LLSC System Monitoring Framework

Server Health Storage

ManagersSystem Administrators CS&E Team

Users

Sensors and
Effectors

Scheduler Network Traffic Power CoolingOS Management Physical
Security

Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar Sidecar

Uniform Resource Identifier (URI)

Services

CS&E: Computational Science and Engineering

Slide - 13

Data Center Monitoring System Screen Shots

• Data center screen shows status of all EcoPOD
systems and subsystems including

• Power distribution
• Temperatures and humidity
• Fans and air conditioners

• Nodes screen shows status of all login and
compute nodes, storage nodes, and network
switches

• Nodes are shown in rack positions

Slide - 14

• Introduction

• LLSC Environment

• Slurm at LLSC

– Lua job_submit script

– SPANK plug-in module

– Resource limit enforcement

– Throughput tuning

• Summary

Outline

Slide - 15

Slurm Experience at LLSC

• Slurm 15.08.8
– Several QoS: normal, pmatlab, high, db, and gpu
– LUA job_submit plugin

• To enforce various requirements for jobs

– Multi-factor priority scheduling
– SPANK Plugin - X11 forwarding & TMPDIR

• Slurm 15.08.8 -> Slurm 16.05.10
– Job array task dependency, “aftercorr”

• Slurm 16.05.10 -> Slurm 17.11.7
– Native X11 forwarding support

• Slurm 17.11.7 -> Slurm 19.05.x (in progress)
– Better support for GPU resources

Slide - 16

Implementation Considerations

• Three separate partitions for different node types/work loads
– Normal: General compute jobs (including DB services)
– Manycore: Large simulations
– GPU: Machine-Learning/AI jobs

• Support for resource management enforcement at partition level
– User limit on resources

• CPU: able to set different core/job slot limits within each partition

• GPU: number based on availability and user demand

• Memory: supports Linux OS CGROUPS kernel feature

Slide - 17

LUA job_submit Plug-in

• Enforce the default feature (used for CPU type) request if not specified
• Set the highest QoS for interactive jobs

– With the highest QoS and multi-factor priority scheduling, interactive jobs are
immediately scheduled

$ salloc --immediate --constraint=opteron srun --pty bash -i
salloc: error: Unable to allocate resources: Immediate execution impossible, insufficient priority

$ salloc --immediate --constraint=opteron --qos=high \
srun --pty bash -i

salloc: Granted job allocation 4109683

• Enforces GPU resource count to be 2 or 4 (Slurm recognizes one K80 as two K40s)
• GPU memory cleanup

– GPU memory is not cleared at the end of job
– Epilog script clears the entire K80 memory

Slide - 18

SPANK Plug-in Module

• X11 forwarding
– Used for applications requires a graphical user interface
– Limited to interactive jobs only

https://github.com/hautreux/slurm-spank-x11

– Switched to the native X11 forwarding support with Slurm

• Redirecting TMP/TMPDIR
– A per-job temporary directory plugin creates a directory on a local filesystem and

exports it in the TMPDIR environment variable
– This provides similar behavior of the previous scheduler
– Useful for applications requiring a local filesystem

• At LLSC, Lustre parallel filesystem disabled file locking for performance

– Used for file-based message communication in gridMatlab for large scale parallel
Matlab/Octave jobs1

1 Large Scale Parallelization Using File-Based Communications, Byun et. al, IEEE HPEC 2019

https://github.com/hautreux/slurm-spank-x11

Slide - 19

LLSC Resource Limit Enforcement

• Partition specific user association limits enforced
– normal partition: GrpTRES=cpu=512
– manycore partition: GrpTRES=cpu=8192
– gpu partition: GrpTRES=cpu=56,gres/gpu:tesla=16

• Allows us to adjust the per-user limit if needed
– Users can request increased core limits for specified time periods
– For some cases, we need to enforce the memory limit as well

• Caveat
– User account for each partition needs to be created to enforce the partition-specific

user association limit

• Desired to handle a single user account to enforce the partition-specific user
association limit

Slide - 20

Immediate Job Support

• The immediate jobs (--immediate flag) are important to LLSC users
– Interactive, on-demand supercomputing resources for interactive jobs
– Database jobs
– Jupyter notebook jobs

• Multi-factor priority scheduling with a high-priority QoS
– Configure slurm.conf for multi-factor priority scheduling
– Attach the high QoS to all immediate jobs

• Changes with low priority jobs to harvest idle resources
– When the cluster is full with low priority jobs, any immediate job submission is

rejected
– Add a time delay with the --immediate flag for interactive jobs

• Time delay allows Slurm to pre-empt the low priority jobs before scheduling the immediate jobs

– sbatch command does not support time delay with the immediate flag
• Implemented own logic to support SPOT (low-priority preemptable) jobs

Slide - 21

Tuning For Throughput Jobs

• Job Characteristics
– Majority of jobs are throughput jobs (array jobs)
– Small number of MPI jobs
– Tuning the scheduler for maximum throughput

performance
• Tuned Parameters

– Started with the baseline high-throughput configuration
https://slurm.schedmd.com/high_throughput.html

– Compared the throughput performance with the current
and new parameters

SchedulerParameters=bf_interval=30,preempt_youngest_first,pack_s
erial_at_end,bf_busy_nodes,batch_sched_delay=10,bf_min_age_res
erve=600,bf_resolution=600,bf_continue,bf_yield_interval=1000000,s
ched_min_interval=2000000,max_rpc_cnt=200

Slide - 22

• Machine Learning models require
– High level programming environments for

building models
– Rapid interaction with analyst

• Standard approaches take minutes to
hours to launch on thousands of cores

• MIT SuperCloud optimizes every aspect
of HPML system to enable
– Launching hundreds of machine learning

models in seconds
– 32,000+ cores (512 64-core Xeon nodes)
– Truly interactive machine learning

Interactive High Performance Machine Learning (HPML)
- Interactive Launch on 32,000+ Cores -

1

10

100

1000

0.001

0.01

0.1

1

10

100 1000 10000 100000

R
at

e
(m

od
el

s/
se

co
nd

)

La
un

ch
 T

im
e

(s
ec

on
ds

)
Number of Processor Cores

Scalable System Scheduling for HPC and Big Data, Reuther et al,
Journal of Parallel and Distributed Computing, 2017

Slide - 23

• Some analytic applications are written
uniquely for Microsoft Windows

• Standard approaches take hours to
launch on thousands of cores
– VMs, Windows HPC, …

• MIT SuperCloud optimizes every aspect
of launch system to enable
– 16,000+ Microsoft Windows environments

(running WINE)
– 16,000+ cores (256 x 64-core Xeon nodes)
– Launched in 5 minutes
– 50+ launches/second
– 100x faster than standard approaches1

– Truly interactive supercomputing

Launching 16,000+ Microsoft Windows Environments

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000
R

at
e

(la
un

ch
es

/s
ec

on
d)

WINE on
MIT SuperCloud

Linux VM on
Eucalyptus

Windows VM on
Azure

Number of Simultaneous Instances

1Interactive Launch of 16,000 Microsoft Windows Instances on a Supercomputer,
Jones et al, IEEE HPEC 2018

Slide - 24

Summary

• LLSC has been using Slurm for 3+ years
• LLSC has learned and exploited a number of features available to Slurm

– LUA job_submit plug-in
– SPANK plug-in module
– Association limit enforcement
– Multi-factor priority scheduling
– QoS
– Prolog/Epilog
– Advance reservation

• LLSC software stack with Slurm enables scaling up users’ applications
– Interactive High Performance Machine Learning
– Microsoft Windows Environment via Wine

