
$ go get Kraken

A stateful approach to cluster management

08/23/2018 – LA-UR LA-UR-18-28020

Time to rethink
cluster management

• Modern language and software
architecture

• Hardware and distribution
agnostic

• Complete modularity

• Microservices architecture

• Community supported project

• It needs to be smarter!

�2

Wishlist:

What do we mean by
“Smarter?”

We need our cluster manager
to:

• Boot to a desired state

• Maintain that state, even in the
event of soft failures

• Manage automated change of
state, like rolling updates

• Adjust to changes in
configuration management

• Provide administrative feedback
on system health and state https://xkcd.com/1319/

�3

https://xkcd.com/1319

Ad hoc vs. Stateful
Automation

Ad hoc Automation

Create scripts and hooks to
handle known failure modes

• Lower initial cost of development

• No verification that failure was
actually handled

• High “entropy” / difficult to
maintain, or even track reliably

• Inflexible: generally designed to
maintain only a single defined
state

�4

Ad hoc vs. Stateful
Automation

Ad hoc Automation

Create scripts and hooks to
handle known failure modes

• Lower initial cost of development

• No verification that failure was
actually handled

• High “entropy” / difficult to
maintain, or even track reliably

• Inflexible: generally designed to
maintain only a single defined
state

Stateful Automation

1.Keep track of desired state vs.
current state

2.Know how to evolve the system
from current state to desired state

• Verifies that the desired state is
actually reached

• More maintainable, centralized
source of automation

• Can be used to attain/maintain any
state we know how to evolve to

�5

User interactions

State System

Listener

Ti
m
e

Event listener
changes Image on

node

API Call:
Create new Node

State store updated

Node requests
provisioning

Services bring node
to Stage 1

API Call:
Node Image change

State Store updated
indicating desired

state

Image Change event
triggered

Image state change
registered with state

engine

Node “phones home”
to get its self-state

Node provisions
based on state

Kraken is a State
Engine

• Kraken is a state engine

1. Tell kraken the state you want (via APIs)

2. State changes trigger events

3. Event listeners make things happen

• State store, event engines, services, etc. are
modules

• The state store actively tracks the state of
system components

Admin changes through API

Full-state node Full-state node,
running services

Partial state node,
running services

Node
(self-state)

Node
(self-state)

Node
(self-state)

Node
(self-state)

Node
(self-state)

Node
(self-state)

Node
(self-state)

State replicates
between these

nodes.

Admins can request
& query state

through the APIs

This node has been
given state for the
nodes below it, and
had services
enabled.

Here changes
propagate both up
and down the tree.

Nodes track their
own state and

propagate changes
up the tree.

Kraken is Distributed
• Kraken is a distributed

state engine

1. State can propagate up/
down a tree of nodes.

2. (Future) State can
replicate sideways.

3. Every node tracks at
least its own state and
propagates changes up.

4. Any node can be given a
portion of state,
including the “running
this service” state,
temporarily or
permanently providing
services to all or a
portion of nodes.

Sideways replication
is future work.

Kraken: Core

Distributed State Engine

Event Engine

Plugin Management

Service Plugins

DHCPv4

tftp

ReST API

…

Image Plugins

Container Loader

Multicast Image

Ceph Block Devices?

…

Kraken is Modular
The Core of Kraken:

Distributed State Engine (and query
language)

Event Engine/State Evolution

Plugin Management

Services are modules, and are controlled
through State

Image distribution and loading is modular

Different classes of modules can be
added as needed (Scheduler integration,
BMC interfaces, etc.)

Modules can be Go interfaces, or outside
processes communicating via RPC or
ReST API

State of the Kraken

• Basic set of functional
microservices

• Can boot multiple architectures

• Uses layered container images in
reference implementation

• …but much still to be done.

• Code just released on GitHub:

http://github.com/hpc/kraken

�9

http://github.com/hpc/kraken

References

[2] D. Terry. Replicated Data Consistency Explained Through Baseball. MSR Technical Report, 2011.

[1] E.A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing, July 2000.

[3] CouchDB documentation. http://guide.couchdb.org/draft/consistency.html#figure/4
[4] W. Vogels. Eventual Consistent. Communications of the ACM,Vol. 52, No. 1., 2009.
[5] D. Arnold, B. Miller. Scalable Failure Recovery for High-performance Data Aggregation.
In IEEE Symposium on Parallel & Distributed Processing (IPDPS), May 2010.

We need smarter cluster
management for the

future of HPC

http://guide.couchdb.org/draft/consistency.html#figure/4

Auxiliary slides

Consistency &
Availability of state
• It’s more important that we keep nodes

running

• It’s less important if nodes occasionally
do something wrong

• As long as it fixes itself

• And doesn’t interrupt jobs

• We should be consistent when we can,
but available always

• We need to scale HUGE

• Paxos, Raft, 2-phase commit…
are out.

• Look to Azure, AWS, etc… who all
use Eventual Consistency for this
kind of service.

[2] D. Terry. Replicated Data Consistency Explained Through Baseball. MSR Technical Report, 2011.

[1] E.A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing, July 2000.

CAP Theorem

ConsistencyAvailability

Partition
Tolerence

AP
 (e

.g
. B

AS
E,

 C
ou

ch
DB

) C
P (e.g. AC

ID, Paxos)

CA (e.g. some HA)

We need two kinds
of state

1. “Configuration state”

•What we want the system
to look like

• Is specified by the
administrators (or
configuration management)

2. “Discoverable state”

•What the system actually
looks like

•State is automatically
discovered on the node(s)

Birth of the Kraken

Four rules of Kraken
state

1. There will always be a well-
defined source of truth

2. We will never guarantee
synchronicity of state

3. State can be wrong as long as
it eventually converges

4. State will be small

Full State Node

Partial State Node

Single State Node

C
o
n
fig

u
ra

tio
n
 T

ru
th

in
es

s

D
isco

verab
le Tru

th
in

ess

Source

Source

Rule 1: Source of
Truth

1. The source of truth for Configuration
state is the Full State Node (FSN)

• Configuration state is set
through the FSN

• In event of failure, the nearest
available node to the FSN is
trusted

2. The source of truth for Discoverable
state is the Single State Node (SSN)

• SSN has modules to read actual
state, e.g. hardware health

• If the SSN is not initialized, or
declared dead, the parent is
trusted

Rule 2:
Asynchronous

• We never guarantee that either
configuration or discoverable
state is the same throughout the
tree

• There is no equivalent to a
“barrier” or “sync” operation

• Any microservice that requires
such an operation must provide
its own mechanism for sync

• This greatly improves scalability

• Example: multicast image
deployment would need to have
its own mechanism to say all
nodes are ready to receive

Figure [1]: Incremental replication between CouchDB nodes.

[3] CouchDB documentation. http://guide.couchdb.org/draft/consistency.html#figure/4

http://guide.couchdb.org/draft/consistency.html#figure/4

FSN

PSN1 PSN2

SSN2SSN1

Set V = 1

V = 0

V = 0

V = 1

“Hello” Packet

V = 1

V = 1

V = 1

Max
FSN -> PSN

Max
PSN -> SSN

Worst Case

Rule 3: Eventual
consistency

• Different parts of the tree may
be out of sync at any given
time, but…

➡ In absence of changes,
sync will converge

➡ And the max time to
converge is well-
defined

• Hence, we may make mistakes

➡ But we will correct them
“quickly”

[4] W. Vogels. Eventual Consistent. Communications of the ACM,Vol. 52, No. 1., 2009.
[2] D. Terry. Replicated Data Consistency Explained Through Baseball. MSR Technical Report, 2011.

x

Rule 4: State is small

• State synchronization is
accomplished with 1-way
“hello” messages containing
the state of a node

• State needs to be contained
with a single network packet
(ideally single node)

• We should build trees to load
balance microservices, not the
state engine itself

• This allows recovery from
partial state node failure to
simply skip to the parent

Failure of a
partial state node

[5] D. Arnold, B. Miller. Scalable Failure Recovery for High-performance Data Aggregation.
In IEEE Symposium on Parallel & Distributed Processing (IPDPS), May 2010.

Kraken: Why?

• Current open provisioning
systems are old, poorly
maintained and too restrictive

• Need a flexible platform that can
easily test new techniques

• Need a cluster manager that is
designed to scale to meet
demands of NextGen
supercomputers

• Needs to be written in a modern
language with modern design
patterns

• Needs to support diverse
hardware and architectures

