
When you have a hammer, everything looks like a nail

Checkpoint/restart in Slurm

Manuel Rodríguez, J.A. Moríñigo, R. Mayo-García

CIEMAT. Madrid, Spain

Outline

o What have we done?

o How have we done it?

o New cluster capabilities through Checkpoint/ Restart

2

What have we done?

o Provide support for DMTCP checkpoint library in Slurm

o Explore the functionalities of Slurm that get a boost with this new

capabilities

o Create some new cool tools

3

Background: checkpoint/restart

o Checkpoint/restart: being able to save the status of a running job and

restart it somewhere else

o Why is it useful/important?

– Straightforward answer: provide fault tolerance

– Not so straightforward usage: take scheduling decisions on running

jobs.

• Interrupt a running job and continue it in the future

• Move a job from a particular resource to another

4

Software Stack

o Resource Manager: Slurm
– (hopefully no need to describe)

o Checkpoint library: DMTCP
– No need to recompile: useful for legacy & proprietary applications
– User-level
– Support for MPI and OpenMP
– Robust and reliable

o MPI: tested with mvapich2 and OpenMPI
– Any should work

5

How have we done it?

o Create a DMTCP driver

o Modify Slurm to provide some required new functionalities related to

access to information

o Explore how to use C/R on different ways
– Existing scheduling algorithms
– Design of new ones
– Implementation of new tools

6

DMTCP Driver

o Analog to the existing ones, such as BLCR

o Only checkpoints sbatch

o Add “--with-dmtcp=<path>” flags on compilation, “--no-dmtcp” to sbatch

o Some (questionable) decisions

– Checkpoint images are deleted after successful execution

– Saves all content of TMPDIR owned by job user

– DMTCP support is enabled by default.

7

Slurm modifications

o Spank

– New parameter S_JOB_CHECKPOINT_DIR so spank_get_item

returns checkpoint folder

– Creation of spank_set_item to modify parameters of the job.

• At this moment, only “S_JOB_ARGV”

o Preemption (node_scheduler.c):

– correction of a couple of bugs related to job preemption with

checkpoint

8

New cluster capabilities through Checkpoint/ Restart

o Job Preemption

o Eternal jobs

o New Scheduling algorithm

o Job migration for cluster maintenance

9

Job Preemption

o Basic idea: when a job with high priority comes in, any job with lower

priority gets temporarily out of the way

o Already existed, but was pretty limited as there was no universal

checkpoint/restart library

o A simple approach:

– 2 job queues in Slurm: high priority and low priority

– Configure Slurm to use CHECKPOINT to remove jobs

– Jobs are restarted in any resource, not on the one they were

originally running

10

Use case: multi-tenant cluster

o My group owns a small cluster for scientific experiments

o Users groups with time-sensitive tasks prefer to own their own hardware

o Problems: administration issues, low usage

o Solution we are starting to implement

– instead of buying machines, they give us the money :)

– we get a set of nodes for our cluster that they “own”

– their jobs have high priority + preemption on their nodes, low priority in

the rest of the cluster

– they have access to a wider set of resources with no drawbacks

11

Eternal jobs

o Born from a discussion with Berkeley Lab. Credit goes to Douglas

Jacobsen

o Idea: very low priority jobs with a really long execution time

o Process

– When the cluster is not fully used, their execution is started

– When a job with normal priority comes, they are checkpointed and

put back in the queue

o Pros: full usage of the cluster, satisfy demands of intensive users

o Cons: their execution can take very long. Only suitable for certain

situations

12

New scheduling algorithms using C/R

o We are now able to move running tasks to different places.

o “Dummy” prototype already implemented: all the technical problems

are solved

o Now we are exploring how to use this to increase performance and/or

reduce energy consumption

– Looks promising, but no results to be presented yet

13

Tool for system management: smigrate

o Scenario: you have to update whatever in a node, but there is a job

running there. Even marking the node as “DRAINING”, it might take

hours or days before the job ends.

o Our tool: mark node as “DRAINING”, checkpoint running jobs, move

them somewhere else

○ flags for some decisions: what should we do with parallel jobs?

and with non-checkpointable ones?

o Already implemented and working fine :)

14

Discussion, issues, and random thoughts

o Worst case scenario on preemption: low priority jobs spending their

entire time being restarted/preempted because there are higher priority

jobs entering the queue at an unfavorable interval

• Minimal time that a job can run without being preempted again?

o TMPDIR

– Saving it takes too long, not saving it leads to information loss

• Approach 1: TMPDIR for every job, with prolog/epilog scripts

• Approach 2: only save information of job owner

15

Discussion, issues, and random thoughts (2)

o Containers and statically linked applications are not supported by

DMTCP, but CRIU does support them

– We created a plugin to support CRIU in Slurm

– We created another one that uses CRIU or DMTCP depending on

the kind of job,

– This all looks like over-engineering

– Current solution is just waiting for DMTCP team to add support

o In preemption, jobs with checkpoint=disabled just get cancelled.

– Do we want that, or to leave them running and just preempt those

with checkpoint support? 16

Take a look!

https://github.com/supermanue/slurm

17 17

Thanks & Acknowledgements

o DMTCP team worked a lot on this integration

o Slurm mailing list

o Ulf and Maik from Technische Universität Dresden

o Funding:

– COST Action NESUS (IC1305)

– CODEC2 (TIN2015-63562-R)

– EU H2020 project HPC4E (grant agreement n 689772)

18

Questions?

