
Exascale Process
Management Interface

Ralph Castain
Intel Corporation

rhc@open-mpi.org

Joshua S. Ladd
Mellanox Technologies Inc.

joshual@mellanox.com

Gary Brown 
Adaptive Computing

gbrown@adaptivecomputing.com

David Bigagli
SchedMD

david@schedmd.com

Artem Y. Polyakov
Mellanox Technologies Inc.

artemp@mellanox.com



PMIx – PMI exascale

Collaborative open source effort led by 
Intel, Mellanox Technologies, and Adaptive Computing.

New collaborators are most welcome!

2



Process Management Interface – PMI

PMI is most commonly utilized to bootstrap MPI processes.
Typically, MPI processes “put” data into the KVS data base that is intended to 

be shared with all other MPI processes, a collective operation that is a logical 
allgather synchronizes the database.

PMI enables Resource Managers (RMs) to use their infrastructure to 
implement advanced support for MPI application acting like  RTE daemons.

SLURM supports both PMI-1/PMI-2 (
http://slurm.schedmd.com/mpi_guide.html)

3

http://slurm.schedmd.com/mpi_guide.html


PMIx – PMI exascale
(What and Why)

 What is it?
 Extended Process Management Interface.

 Why?
 MPI/OSHMEM job launch time is a hot topic!
 Extreme-scale system requirements: 30 second job launch time for 

O(106) MPI processes. 
 Scaling studies have illuminated many limitations of current PMI-

1/PMI-2 interfaces at extreme scale.
 Tight integration with Resource Managers can drastically reduce 

the amount of data that needs to be exchanged during MPI_Init.

PMIx is a new process management interface

that has been designed to address these limitations

4



PMIx – PMI exascale
(Technical Goals)

 Reduce the memory footprint from O(N) to O(1) by leveraging 
shared memory and distributed databases. 

 Reduce the volume of data exchanged in collective operations 
with scoping hints.

 Provide the ability to overlap communication with computation 
with non-blocking collectives and get operations.

 Support both collective communication modes of data 
exchange and point-to-point "direct" data retrieval.

 Reduce the amount of local messages exchanged between 
application processes and RTE daemons (many-core nodes).

 Use high-speed HPC interconnects available on the system 
for the data exchange.

 Extend "Application – Resource Manager" interface to support 
fault-tolerance and energy-efficiency requirements. 5



PMIx implementation architecture

High-speed transport for  collective 

and point-to-point  communication 

(PMIx_Fence/PMIx_Get )

Shared memory to reduce 

memory footprint 

6



PMIx v1.0 features

Data scoping with 3 levels of locality: local, remote, global.
Communication scoping: PMIx_Fence under arbitrary 

subset  of processes.
Full support for point-to-point "direct" data retrieval well 

suited for applications with sparse communication graphs.
Full support for non-blocking operations.
Support for “binary blobs”: PMIx client retrieves process 

data only once as one chunk reducing intra-node exchanges 
and encoding/decoding overhead.

Basic support for MPI dynamic process management;

7



PMIx v2.0 features

Performance enhancements:
One instance of database per node with "zero-message" data 

access using shared-memory.
Distributed database for storing Key-Values.
Enhanced support for collective operations.

Functional enhancements:
Extended support for dynamic allocation and process 

management suitable for other HPC paradigms (not MPI-only.)
Power management interface to RMs.
File positioning service.
Event notification service enabling fault tolerant-aware 

applications.
Fabric QoS and security controls.

8



SLURM PMIx plugin

PMIx support in SLURM
Implemented as a new MPI plugin called "pmix".
To use it:

a) either set as a command line command line parameter:

$ srun –mpi=pmix ./a.out
b) or set PMIx plugin as the default in slurm.conf file:

MpiDefault = pmix
Development version of the plugin is available on github:

https://github.com/artpol84/slurm/tree/pmix-step2

 Beta version of PMIx plugin will be available in the next SLURM major 
release (15.11.x) at SC 2015. 

9

https://github.com/artpol84/slurm/tree/pmix-step2


PMIx development timeline

2015 2016 2017

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

 PMIx 1.0:
• basic feature set;
• initial performance optimizations.

 Open MPI integration (already in 
master).

 SLURM PMIx plugin (15.11.x release)

 PMIx 1.0:
• basic feature set;
• initial performance optimizations.

 Open MPI integration (already in 
master).

 SLURM PMIx plugin (15.11.x release)

 PMIx 2.0:
• memory footprint improvements;
• distributed database storage;
• internal collectives implementation and 

integration with existing collectives 
libraries (Mellanox HCOLL);

• enhanced RM API.
 Update of Open MPI and SLURM 

integration.
 LSF and Moab/TORQUE support.

 PMIx 2.0:
• memory footprint improvements;
• distributed database storage;
• internal collectives implementation and 

integration with existing collectives 
libraries (Mellanox HCOLL);

• enhanced RM API.
 Update of Open MPI and SLURM 

integration.
 LSF and Moab/TORQUE support. 10



Contribute or Follow Along!

 Project: https://www.open-mpi.org/projects/pmix/
 Code: https://github.com/open-mpi/pmix

Contributions are welcomed!

11

https://www.open-mpi.org/projects/pmix/
https://github.com/open-mpi/pmix

	Slide 1
	PMIx – PMI exascale
	Process Management Interface – PMI
	PMIx – PMI exascale (What and Why)
	PMIx – PMI exascale (Technical Goals)
	PMIx implementation architecture
	PMIx v1.0 features
	PMIx v2.0 features
	SLURM PMIx plugin
	PMIx development timeline
	Contribute or Follow Along!

