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Open Source Code

● I'll reference several codes we have open 
sourced

http://github.com/BYUHPC

http://github.com/BYUHPC


  

History

● Switched to Slurm 2.5 from Moab/Torque in 
January 2013

● SchedMD support
● We're crazy

– If you remember my SLUG 2013 presentation, we 
were the crazy people who did a split-brain, rolling 
transition to Slurm without telling our users

● Almost flawless



  

About

● Resources are free to use
● Each P.I. has an account, all accounts are treated 

equally
● Have about 6 partitions, access control with job 

submit plugin and AllowQOS
● Slurm 14.11.8
● Will update to 15.08 in a week or two
● Excited about TRES



  

User Training

● We offer 1-1 training to each new user but they almost 
never take us up on it due to training materials

● Several short training videos on YouTube channel
– http://youtube.com/BYUSupercomputing

– Intro to Slurm Tools

● Unix Tutorial
– https://fsl.byu.edu/documentation/unix-tutorial/

● Script Generator
– https://github.com/BYUHPC/BYUJobScriptGenerator

http://youtube.com/BYUSupercomputing
https://www.youtube.com/watch?v=U42qlYkzP9k
https://fsl.byu.edu/documentation/unix-tutorial/
https://github.com/BYUHPC/BYUJobScriptGenerator


  



  

Feature-Based Scheduling

● Users request features (-C avx) rather than partitions
– avx, avx2, fma, ib

● Must request memory and timelimit for anything beyond 
HelloWorld
– Defaults: 1 core, 512 MB memory, 30 minutes (sufficient even for python HelloWorld.py)

● Lua job submit plugin removes non-usable partitions 
from the list of partitions they can use

● Least capable nodes scheduled first
● Better resource utilization, shorter avg. queue times



  

Job submit plugin

● Arbitrary business logic:
– Users should have access to the “special_snowflake” QOS on the third 

Wednesday of the month if the user's uid modulo day of month == 3 but only 
if they request 7 cores, 2 GPUs, and between 64 and 70 GB of memory

● General layout of BYU's job submit plugin:
– all_partitions plugin sets a job's partition to all partitions, unless user 

requested a specific one(s)

– Empty “blankpart” allows easy detection of whether they requested a 
specific partition or not (users never request “blankpart” partition)

– Lua script checks if job can run in partition. If not, remove from list
● Based on memory, CPU count, GRES, timelimit, etc.

– Assigns to particular QOS as applicable

● Business logic is worth the few hours of learning
– Really, it's just a few hours to learn Lua and the job submit plugin



  

Maximum Job Timelimits

● 7 days on Ethernet cluster
● 3 days on everything else (IB, GPUs, fat nodes)
● Want to lower Ethernet cluster limit in future
● Survey...



  

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to 

switch to Fair Tree?
● Problems? Questions?

For more information, see SLUG 2014 presentation: http://slurm.schedmd.com/SUG14/fair_tree.pdf

http://slurm.schedmd.com/SUG14/fair_tree.pdf


  

Account Coordinator

● Each PI has a Slurm account
● Each PI is the account coordinator of that account

– sacctmgr add coordinator Names=$username Accounts=$account

● Can kill/hold user jobs
● Can set shares for Fairshare and limits
● Can add/remove QOS for users for access to private 

resources (AllowQOS on partition)
● Reduces admin overhead
● Some GUI tools to assist



  

GrpCPURunMins

● Limit on cputime in use at one time:
– Limit on sum(cores allocated * remaining time)

● We set it per-account
● Encourages shorter walltimes

– The shorter your walltimes, the less you're affected

● Can stagger the start time of jobs
● Reduces average queue time for other accounts since 

nodes are more frequently freeing up (assuming lots of 
small jobs) 

More info:  http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html


  

Someone lowered their walltimes...
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Time

Green and red are in same account. Red submitted jobs but green's jobs were fairly staggered
due to GrpCPURunMins



  

GrpCPURunMins Simulator

● Available on github:
– https://github.com/BYUHPC/GrpCPURunMins-Visualizer

● Compare effect of GrpCPURunMins with 
different limits, job sizes, and job walltimes

● Can currently “use” more resources than are 
available
– We need to add a max core count (or GrpCPUs)

https://github.com/BYUHPC/GrpCPURunMins-Visualizer


  



  



  



  



  

Slurm Shares Visualizer

https://github.com/BYUHPC/slurm-fairshare-pie

https://github.com/BYUHPC/slurm-fairshare-pie


  



  



  



  

Slurm Limits
https://github.com/BYUHPC/slurm-limits-web

https://github.com/BYUHPC/slurm-limits-web


  



  



  

Node sharing

● Shared node access unless user specifies 
--exclusive

● cgroups plugins enforce resource requests
● Linux namespaces control /tmp, /dev/shm
● Users are prevented from harming each other
● Works great except for ssh, the poor man's MPI



  

ssh-launched processes

● ssh-launched processes escape Slurm's 
oversight

● Instead of being a child of slurmd/slurmstepd, 
processes are children of sshd

● sshd knows nothing about Slurm
– No accounting, cgroups, cleanup on exit, etc.

● Best answer:  Don't use ssh to launch tasks
● Problem:  Not all code integrates with slurm



  

Obvious solution: PAM module

● PAM module should “adopt” ssh process into 
the correct job
– Account for it, move into correct cgroups, etc.

● Problem:  How does PAM know which job the 
ssh connection belongs to?



  

ssh's SendEnv/AcceptEnv + pam

● Use ssh's SendEnv/AcceptEnv to send 
$SLURM_JOB_ID?

● Confirmed to not work by openssh developer
– https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

● ssh runs pam authentication and session 
modules before user-provided environment is 
set

https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html


  

sshrc?

● /etc/ssh/sshrc might actually work
– Does have access to user-provided environment variables

– Runs as user, not root

● …except that users can override with ~/.ssh/rc
– Rare

– Can disable as of openssh 6.7 w/PermitUserRC=no
● https://bugzilla.mindrot.org/show_bug.cgi?id=2160

● Can mess up sshrc in a way that breaks X11 and other things
● Users can override $SLURM_JOB_ID
● Messy but would likely work if PermitUserRC=no and if the user 

never runs exec{l,p}e functions or changes $SLURM_JOB_ID

https://bugzilla.mindrot.org/show_bug.cgi?id=2160


  

ssh->srun wrapper?

● An ssh wrapper sounds like a good idea...
● But is it 1:1 or 1:many tasks that will be launched on the remote node? 

In other words...
– Will the job run “ssh node7 ./dostuff-threaded -n 16” once?

– Or will the job run “ssh node7 ./dostuff-serial” 16 times?

● If the former, srun -n1 will only allow it access to one core depending 
on settings but srun -N1 --exclusive will work

● If the latter, srun -n1 will work but srun -N1 --exclusive will block the 
next 15 instances

● Since it's just a wrapper, the wrapper can't know which behavior to use
● Each ssh instance results in a new step. Results in many db entries



  

Does netstat have the answer?

● Trace the incoming connection
● netstat -np    # destination of ssh connection

Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name

tcp        0      0 10.1.123.106:42008      11.22.33.44:80          ESTABLISHED 6147/firefox    

tcp        0      0 10.1.123.106:37461      10.22.234.210:22        ESTABLISHED 3804/ssh        

tcp        0      0 10.1.123.106:59790      23.456.789.01:993       ESTABLISHED 28218/thunderbird

tcp        0      0 10.1.123.106:22         12.3.456.78:55777       ESTABLISHED 14881/sshd: ryancox

● Last line is incoming to sshd
● netstat -np    # source of ssh connection

tcp        0      0 12.3.456.78:55777       10.1.123.106:22       ESTABLISHED 23181/ssh



  

Solution

● Destination:
tcp        0      0 10.1.123.106:22         12.3.456.78:55777       ESTABLISHED 14881/sshd: ryancox

● Source:
tcp        0      0 12.3.456.78:55777       10.1.123.106:22         ESTABLISHED 23181/ssh

● The source host can determine the pid of the originating 
process

● Slurm tracks all processes
● Look up the job_id by pid with existing slurm_pid2jobid() 



  

New RPC

● “CallerID” - ask originating server for job ID 
using new RPC

● Created REQUEST_NETWORK_CALLERID 
RPC call
– RPC call itself is OS-agnostic

– 5 fields: src and dst IP and port, IP version (4, 6)

● Reads /proc/net/tcp{,6}
● Response contains nodename and job_id



  

Source Destination

ssh sshd

pam_slurm_adopt.so

Determine src/dst IP/port of ssh connection

callerid RPC call to slurmd @ src IPslurmd

Find process that initiated connection

Find which job the process is in

Return job_id job_id returned to pam_slurm_adopt.so

“adopt” process into job

continue...

job 123



  

scontrol

● Support for RPC added to scontrol:

scontrol callerid <src_ip> <src_port> <dst_ip> <dst_port> <4|6>

– Remember that src is the source of the ssh connection, i.e. 
scontrol will connect to src, not dst

● scontrol callerid 192.168.0.99 49129 192.168.0.43 22 4

● scontrol callerid ::2 7788 ::1 22 6



  

Process Adoption

● Jobs will be “adopted” into the appropriate job by 
pam_slurm_adopt.so

● A step must already exist on the node for processes to be 
adopted into

● SchedMD added a generic extern job step that is created 
at job launch time (Thanks Moe!)
– Enabled with PrologFlags=contain

– The adopted process will go into this step

● Unfortunately... I have not yet finished the adoption code
– Stubs are in place in pam_slurm_adopt.c (as of 15.08)



  

Job ID Indeterminate?

● What happens if the job ID can't be determined?
● Configurable in PAM module
● If user has no job on node, deny
● If user has single job, assume it's that one
● If user has multiple jobs, pick a random one (they 

somehow evaded our detection or came in from a 
login node... not my problem)
– Alternatively, place them in generic /uid_$uid cgroup



  

Caveats

● Source IP address must have listening slurmd
– i.e. ssh connection must originate from an IP 

address that the local slurmd is listening on

● Linux-only for now but probably not hard to port
– RPC call itself is OS-agnostic

● IPv6 is ready but Slurm RPC calls are IPv4 only



  

Status

● 15.08.0 has all necessary code except the code 
to adopt processes

● pam_slurm_adopt can successfully determine 
job_id but can't yet adopt it
– I plan to finish pam_slurm_adopt within a few 

months

– If you want to work on it before then, please do but 
let me know so I don't duplicate the effort.



  

Wishlist

● Proactive “you're using it wrong” tools for users
– Job “efficiency” stats in job output? Actual/allocated cputime, memory, walltime, etc.  Include 

it in job emails?

– “GoodCitizenship” priority factors
● TRES efficiency (CPU, memory, GPU, walltime, etc) of job allocation as a whole (don't care about steps)
● Walltime nice but not super important; other efficiencies are really important

● More verbose error messages (sounds like pending reasons are improved in 15.08)
– Users have a hard time with good explanations; terse messages are even harder

– Maybe “scontrol show job”, et al can have a verbose explanation or “Resources”, etc

● Non-idle node state for nodes that are reserved for high priority jobs (No, userbob, 
those nodes are not idle; they will soon be part of important_user's job)

● When job dies due to OOM, set RSS accounting fields equal to the allocated 
amount (they tried to exceed it, right?) and set a job failure state 
“MEM_LIMIT_EXCEEDED” or similar



  

Questions?

http://github.com/BYUHPC

http://github.com/BYUHPC
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