

Brigham Young University
Fulton Supercomputing Lab

Ryan Cox

Slurm User Group – September 16, 2015 – Washington, D.C.

Open Source Code

● I'll reference several codes we have open
sourced

http://github.com/BYUHPC

http://github.com/BYUHPC

History

● Switched to Slurm 2.5 from Moab/Torque in
January 2013

● SchedMD support
● We're crazy

– If you remember my SLUG 2013 presentation, we
were the crazy people who did a split-brain, rolling
transition to Slurm without telling our users

● Almost flawless

About

● Resources are free to use
● Each P.I. has an account, all accounts are treated

equally
● Have about 6 partitions, access control with job

submit plugin and AllowQOS
● Slurm 14.11.8
● Will update to 15.08 in a week or two
● Excited about TRES

User Training

● We offer 1-1 training to each new user but they almost
never take us up on it due to training materials

● Several short training videos on YouTube channel
– http://youtube.com/BYUSupercomputing

– Intro to Slurm Tools

● Unix Tutorial
– https://fsl.byu.edu/documentation/unix-tutorial/

● Script Generator
– https://github.com/BYUHPC/BYUJobScriptGenerator

http://youtube.com/BYUSupercomputing
https://www.youtube.com/watch?v=U42qlYkzP9k
https://fsl.byu.edu/documentation/unix-tutorial/
https://github.com/BYUHPC/BYUJobScriptGenerator

Feature-Based Scheduling

● Users request features (-C avx) rather than partitions
– avx, avx2, fma, ib

● Must request memory and timelimit for anything beyond
HelloWorld
– Defaults: 1 core, 512 MB memory, 30 minutes (sufficient even for python HelloWorld.py)

● Lua job submit plugin removes non-usable partitions
from the list of partitions they can use

● Least capable nodes scheduled first
● Better resource utilization, shorter avg. queue times

Job submit plugin

● Arbitrary business logic:
– Users should have access to the “special_snowflake” QOS on the third

Wednesday of the month if the user's uid modulo day of month == 3 but only
if they request 7 cores, 2 GPUs, and between 64 and 70 GB of memory

● General layout of BYU's job submit plugin:
– all_partitions plugin sets a job's partition to all partitions, unless user

requested a specific one(s)

– Empty “blankpart” allows easy detection of whether they requested a
specific partition or not (users never request “blankpart” partition)

– Lua script checks if job can run in partition. If not, remove from list
● Based on memory, CPU count, GRES, timelimit, etc.

– Assigns to particular QOS as applicable

● Business logic is worth the few hours of learning
– Really, it's just a few hours to learn Lua and the job submit plugin

Maximum Job Timelimits

● 7 days on Ethernet cluster
● 3 days on everything else (IB, GPUs, fat nodes)
● Want to lower Ethernet cluster limit in future
● Survey...

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to

switch to Fair Tree?
● Problems? Questions?

For more information, see SLUG 2014 presentation: http://slurm.schedmd.com/SUG14/fair_tree.pdf

http://slurm.schedmd.com/SUG14/fair_tree.pdf

Account Coordinator

● Each PI has a Slurm account
● Each PI is the account coordinator of that account

– sacctmgr add coordinator Names=$username Accounts=$account

● Can kill/hold user jobs
● Can set shares for Fairshare and limits
● Can add/remove QOS for users for access to private

resources (AllowQOS on partition)
● Reduces admin overhead
● Some GUI tools to assist

GrpCPURunMins

● Limit on cputime in use at one time:
– Limit on sum(cores allocated * remaining time)

● We set it per-account
● Encourages shorter walltimes

– The shorter your walltimes, the less you're affected

● Can stagger the start time of jobs
● Reduces average queue time for other accounts since

nodes are more frequently freeing up (assuming lots of
small jobs)

More info: http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

Someone lowered their walltimes...

Time

C
P

U
s

Time

Green and red are in same account. Red submitted jobs but green's jobs were fairly staggered
due to GrpCPURunMins

GrpCPURunMins Simulator

● Available on github:
– https://github.com/BYUHPC/GrpCPURunMins-Visualizer

● Compare effect of GrpCPURunMins with
different limits, job sizes, and job walltimes

● Can currently “use” more resources than are
available
– We need to add a max core count (or GrpCPUs)

https://github.com/BYUHPC/GrpCPURunMins-Visualizer

Slurm Shares Visualizer

https://github.com/BYUHPC/slurm-fairshare-pie

https://github.com/BYUHPC/slurm-fairshare-pie

Slurm Limits
https://github.com/BYUHPC/slurm-limits-web

https://github.com/BYUHPC/slurm-limits-web

Node sharing

● Shared node access unless user specifies
--exclusive

● cgroups plugins enforce resource requests
● Linux namespaces control /tmp, /dev/shm
● Users are prevented from harming each other
● Works great except for ssh, the poor man's MPI

ssh-launched processes

● ssh-launched processes escape Slurm's
oversight

● Instead of being a child of slurmd/slurmstepd,
processes are children of sshd

● sshd knows nothing about Slurm
– No accounting, cgroups, cleanup on exit, etc.

● Best answer: Don't use ssh to launch tasks
● Problem: Not all code integrates with slurm

Obvious solution: PAM module

● PAM module should “adopt” ssh process into
the correct job
– Account for it, move into correct cgroups, etc.

● Problem: How does PAM know which job the
ssh connection belongs to?

ssh's SendEnv/AcceptEnv + pam

● Use ssh's SendEnv/AcceptEnv to send
$SLURM_JOB_ID?

● Confirmed to not work by openssh developer
– https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

● ssh runs pam authentication and session
modules before user-provided environment is
set

https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

sshrc?

● /etc/ssh/sshrc might actually work
– Does have access to user-provided environment variables

– Runs as user, not root

● …except that users can override with ~/.ssh/rc
– Rare

– Can disable as of openssh 6.7 w/PermitUserRC=no
● https://bugzilla.mindrot.org/show_bug.cgi?id=2160

● Can mess up sshrc in a way that breaks X11 and other things
● Users can override $SLURM_JOB_ID
● Messy but would likely work if PermitUserRC=no and if the user

never runs exec{l,p}e functions or changes $SLURM_JOB_ID

https://bugzilla.mindrot.org/show_bug.cgi?id=2160

ssh->srun wrapper?

● An ssh wrapper sounds like a good idea...
● But is it 1:1 or 1:many tasks that will be launched on the remote node?

In other words...
– Will the job run “ssh node7 ./dostuff-threaded -n 16” once?

– Or will the job run “ssh node7 ./dostuff-serial” 16 times?

● If the former, srun -n1 will only allow it access to one core depending
on settings but srun -N1 --exclusive will work

● If the latter, srun -n1 will work but srun -N1 --exclusive will block the
next 15 instances

● Since it's just a wrapper, the wrapper can't know which behavior to use
● Each ssh instance results in a new step. Results in many db entries

Does netstat have the answer?

● Trace the incoming connection
● netstat -np # destination of ssh connection

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 10.1.123.106:42008 11.22.33.44:80 ESTABLISHED 6147/firefox

tcp 0 0 10.1.123.106:37461 10.22.234.210:22 ESTABLISHED 3804/ssh

tcp 0 0 10.1.123.106:59790 23.456.789.01:993 ESTABLISHED 28218/thunderbird

tcp 0 0 10.1.123.106:22 12.3.456.78:55777 ESTABLISHED 14881/sshd: ryancox

● Last line is incoming to sshd
● netstat -np # source of ssh connection

tcp 0 0 12.3.456.78:55777 10.1.123.106:22 ESTABLISHED 23181/ssh

Solution

● Destination:
tcp 0 0 10.1.123.106:22 12.3.456.78:55777 ESTABLISHED 14881/sshd: ryancox

● Source:
tcp 0 0 12.3.456.78:55777 10.1.123.106:22 ESTABLISHED 23181/ssh

● The source host can determine the pid of the originating
process

● Slurm tracks all processes
● Look up the job_id by pid with existing slurm_pid2jobid()

New RPC

● “CallerID” - ask originating server for job ID
using new RPC

● Created REQUEST_NETWORK_CALLERID
RPC call
– RPC call itself is OS-agnostic

– 5 fields: src and dst IP and port, IP version (4, 6)

● Reads /proc/net/tcp{,6}
● Response contains nodename and job_id

Source Destination

ssh sshd

pam_slurm_adopt.so

Determine src/dst IP/port of ssh connection

callerid RPC call to slurmd @ src IPslurmd

Find process that initiated connection

Find which job the process is in

Return job_id job_id returned to pam_slurm_adopt.so

“adopt” process into job

continue...

job 123

scontrol

● Support for RPC added to scontrol:

scontrol callerid <src_ip> <src_port> <dst_ip> <dst_port> <4|6>

– Remember that src is the source of the ssh connection, i.e.
scontrol will connect to src, not dst

● scontrol callerid 192.168.0.99 49129 192.168.0.43 22 4

● scontrol callerid ::2 7788 ::1 22 6

Process Adoption

● Jobs will be “adopted” into the appropriate job by
pam_slurm_adopt.so

● A step must already exist on the node for processes to be
adopted into

● SchedMD added a generic extern job step that is created
at job launch time (Thanks Moe!)
– Enabled with PrologFlags=contain

– The adopted process will go into this step

● Unfortunately... I have not yet finished the adoption code
– Stubs are in place in pam_slurm_adopt.c (as of 15.08)

Job ID Indeterminate?

● What happens if the job ID can't be determined?
● Configurable in PAM module
● If user has no job on node, deny
● If user has single job, assume it's that one
● If user has multiple jobs, pick a random one (they

somehow evaded our detection or came in from a
login node... not my problem)
– Alternatively, place them in generic /uid_$uid cgroup

Caveats

● Source IP address must have listening slurmd
– i.e. ssh connection must originate from an IP

address that the local slurmd is listening on

● Linux-only for now but probably not hard to port
– RPC call itself is OS-agnostic

● IPv6 is ready but Slurm RPC calls are IPv4 only

Status

● 15.08.0 has all necessary code except the code
to adopt processes

● pam_slurm_adopt can successfully determine
job_id but can't yet adopt it
– I plan to finish pam_slurm_adopt within a few

months

– If you want to work on it before then, please do but
let me know so I don't duplicate the effort.

Wishlist

● Proactive “you're using it wrong” tools for users
– Job “efficiency” stats in job output? Actual/allocated cputime, memory, walltime, etc. Include

it in job emails?

– “GoodCitizenship” priority factors
● TRES efficiency (CPU, memory, GPU, walltime, etc) of job allocation as a whole (don't care about steps)
● Walltime nice but not super important; other efficiencies are really important

● More verbose error messages (sounds like pending reasons are improved in 15.08)
– Users have a hard time with good explanations; terse messages are even harder

– Maybe “scontrol show job”, et al can have a verbose explanation or “Resources”, etc

● Non-idle node state for nodes that are reserved for high priority jobs (No, userbob,
those nodes are not idle; they will soon be part of important_user's job)

● When job dies due to OOM, set RSS accounting fields equal to the allocated
amount (they tried to exceed it, right?) and set a job failure state
“MEM_LIMIT_EXCEEDED” or similar

Questions?

http://github.com/BYUHPC

http://github.com/BYUHPC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

