
Seren Soner, Can Özturan

Boğaziçi University

10/10/2012

Outline
 Motivation

 Challenges

 Co-Allocation Approach

 Integer Programming Based Scheduler

 Formulation

 Implementation details

 ESP benchmark

 Results

 Auction Based Scheduler

 Formulation

 Bid generation

Motivation
• Job schedulers schedule jobs in a sequential fashion.

• Not considering other jobs in the queue may cause
unnecessary waiting.

• Instead, consider multiple jobs at once, and try to allocate
them in the optimal manner.

Co-allocation Based Approach
 The problem of allocating multiple resources (whether of

the same type or different types) simultaneously to jobs is
known as co-allocation

 This problem also appears as auction problem in the e-
commerce area where auctioneers submit bids for
purchasing a bundle of items (of the same type or different
types)

 Algorithms developed in the literature for auctions can be
made use of in job scheduling also

 Repeatedly take a collection of jobs from the front of the
job queue (i.e. a window of jobs) and solve co-allocation
problem

Challenges
• Scalability : Massive number of resources and large number

of jobs with different resource requirements and priorities
(i.e. massive number of variables)

• GPU awareness : GPU resources are appearing on
supercomputers in different configurations.

• Topology awareness : Mapping of an

 application to the resources in close

 vicinity on the topology

An Illustrative Example
J1

4096
cores

-n 4096

J2

2048 cores, 512 nodes
2 GPUs/node

-N 512 –n 2048 –gres=gpu:2

J3

2048 cores, 512 nodes
2 GPUs/node

-N 512 –n 2048 –gres=gpu:2

Priority ordered queue

idle system, 1024 nodes (8 cores & 2GPUs/node)

node 1 node 1024

SLURM/Backfill allocation

J1

4096 cores

J2

2048 cores, 512 nodes
2 GPUs/node

node 1 node 1024

• J1 nodes 1-512, 8 cores/node

• J2 nodes 513-1024, 4 cores/node, 2GPUs/node

• J3 waiting in queue

• GPUs in nodes 1-512 are unutilized.

• 4 cores/node in nodes 513-1024 are unutilized.

IPSched allocation

J2

2048 cores, 512 nodes, 2 GPUs/node

J3

2048 cores, 512 nodes, 2 GPUs/node

J1

4096 cores

node 1 node 1024

• J1 nodes 1-1024, 4 cores/node

• J2 nodes 1-512, 4 cores/node, 2GPUs/node

• J3 nodes 513-1024, 4 cores/node, 2GPUs/node

• All resources in all nodes are utilized.

IP formulation

Assumptions
 No preemption

 No topology

 Memory is not important

[1] Cplex Optimization, Inc, “Using the CPLEX Callable Library”. Incline Village, NV 89451-9436, 1989-1994.

Problem Size
Variable

name
Number of variables

sj |N|

cj |N|

xij |N| * |J|

tij |N| * |J|

Total 2 * |N| * (1 + |J|)

Equation
no

Number of constraints

1 |J|

2 |N|

3 |J|

4 |N|

5 2 * |J|

6 2 * |J| * |N|

Total 2 * (|N| + 2 * |J| + |J|*|N|)

Implementation Details
 Plug-in runs on slurmctld

 The scheduler runs at most every 4 seconds

 Collects information about nodes and jobs at each step

 Solve IP problem using CPLEX [1] in pre-determined
time (3 seconds)

 Allocate jobs

 Create and solve the problem again

[1] Cplex Optimization, Inc, “Using the CPLEX Callable Library”. Incline Village, NV 89451-9436, 1989-1994.

Implementation Details (cont’d)
 Scheduler at the SLURM core code has been removed,

we want IPSched to schedule all the jobs

 A new select plugin has been designed, similar to
cons_res. Schedules the jobs to the resources that
IPSched requests.

 Minor addition in order to retrieve the number of
available GPUs at nodes.

Algorithm
Create job window, size <= MAX_JOB_COUNT
From each job in window, collect
 a. priority (pj)
 b. CPU request (rj)
 c. GPU request (gj)
 d. Node request (Nj,min -Nj,max)
From each node, collect
 a. number of available CPU’s
 b. number of available GPU’s,
Form the IP problem
Solve the IP problem and get sj and xij values.
For jobs with sj = 1, set job’s process layout matrix and start the job by:
 a. For each node i, assign processors on that node according to xij

 b. Start the job, no more node selection algorithm is necessary.

ESP benchmark [4]
 Consists of various job sizes

 230 jobs in one set

 Execution times fixed

 Each job duplicated

 One copy requests CPU only

 One copy requests CPU + 2 GPUs/node

[2] A.T. Wong, L. Oliker,W.T.C. Kramer, T.L. Kaltz, D.H. Bailey, “ESP: A System Utilization Benchmark,” in SC2000: High Performance Networking and Computing. Dallas

Convention Center, Dallas, TX, USA, November 4–10, 2000, ACM, Ed., pp. 52–52, ACM Press and IEEE Computer Society Press.

Emulation settings
 Real time emulation

 1024 nodes, each with 8 cores and 2 GPUs

 IP solution time is 4 seconds

 Up to 200 jobs in window

 Priority settings
 Multifactor (age factor = size factor)

 Basic

 Backfill and IPSCHED comparison

 Ran this on a machine with 9 nodes (2x Intel X5670, 48 GB
memory). One node dedicated to slurmctld, all other
nodes running 128 slurmd.

Why not SLURM Simulator ?
 Alejandro Lucero has coded a SLURM simulator [3].

 Works well for comparing different fairshare, priority
decisions etc.

 Would not be useful for our simulation, since the
governing issue for our simulation is not the job
execution itself, but the solution of the IP problem.

[3] Alejandro Lucero, «Simulation of batch scheduling using real production-ready software tools»

IPSCHED Results
Experiment Waiting Time (hr)

(mean ± std)

Slowdown Ratio
(mean ± std)

Utilizatio
n (mean)

Backfill / Basic 1.60 ± 0.836 18.11 ± 25.49 0.90

IPSCHED / Basic 0.77 ± 1.257 9.95 ± 18.87 0.92

Backfill / Multifactor 2.42 ± 1.758 22.75 ± 22.02 0.89

IPSCHED / Multifactor

0.88 ± 1.223 10.75 ± 18.20 0.94

Topology problems
 IPSched was not good enough in terms of topology

 The allocation showed that there was room for
improvement in SLURM’s approach, but did not
consider topology at all.

 Came up with another approach, a more complex one.

 Please note that AUCSCHED is still under progress,
formulation and implementation details may be
subject to change.

AUCSCHED Formulation

AUCSCHED Formulation

Problem Size
Variable

name
Number of variables

bjc |B|

ujn |K|

rjn |K|

Total 2|K| + |B|

Equation
no

Number of constraints

2 |J|

3 |B|

4 |J|

5 |N|

6 |N|

7 -

8 |K|

Total 2|N| + 2|J| + |K| + |B|

|K| = O(|B| * |N|)

Bid Generation
 Choose «nodeset»s so that

 They fit the job’s needs

 They are «less fragmented»

 Give different preference values according to
fragmentation

 This time the IP variables are not nodes themselves,
but the bids – therefore nodesets.

 While generating the bids, all types of constraints can
be checked (nodelist, exclude nodes, generic
resources, licenses)

Bid Generation
 Choose bids so they do not overlap (as distinct as

possible)

 Generate up to MAXBIDPERJOB bids for each job

 Generate up to MAXBID in total

AUCSCHED results
 Utilization in PWA too low

 We created our own workload – instead of only 14 type
of jobs, job size, request, execution times are random
(similar to a real workload).

 Work is still in progress, however preliminary results
show that we can reach better utilization values
compared to SLURM/Backfilling.

 Fragmentation problem is decreased, but is still
around 10-20% higher than that of SLURM.

Conclusions & Future work
 Shows better results in terms of metrics

 Not applicable to everybody due to usage of CPLEX
(not free for commercial licenses)

 Formulate a heuristic working in polynomial time

 Implement other constraints to bid generation
(currently only gres is implemented)

Acknowledgments
 PRACE 1IP project

grant agreement RI-261557

 PRACE 2IP project
grant agreement FP7-283493

 Matthieu Heatroux for discussions

 Alejandro Lucero for help with the simulator

