Challenges in Evaluation of Parallel Job Schedulers

Dror Feitelson The Hebrew University of Jerusalem

Parsing the Title

- Parallel job schedulers
 - Given resource requirements of new jobs
 - Processors
 - Estimated runtime (inaccurate upper bound)
 - Memory?
 - Decide on order of execution and allocation of processors
 - On-line algorithm (don't know future jobs)
 - Used on clusters, grids, and supercomputers

Parsing the Title

- Parallel job schedulers
- Evaluation
 - Estimate performance (typically) using simulations
 - Average response time (wait time)
 - Average slowdown (bounded?)
 - Given alternative schemes, which is better
 - Find "optimal" parameter values
 - Depends on workload (the input)
 - Distributions of parameters (job sizes, runtime, ...)
 - Correlations (size-runtime, daily cycle, ...)

Parsing the Title

- Parallel job schedulers
- Evaluation
- Challenges
 - It isn't easy to do right
 - How to create different load conditions
 - How to incorporate feedback
 - What level of detail to employ

workloads

Workloads

production use

performance results

Creating different loads Work with Netanel Zakay

- Characterize performance as function of load (Like queueing analysis)
- Find system capacity (maximal sustainable load)
- Serve to decouple system and users
 - Users generate load
 - System performance depends on load
 - "Don't need to know details of user behavior"

Common Approaches

- Use logs with different loads
- Change load by changing job sizes
- Change load by changing runtimes
- Change load by changing interarrivals

- May not be available
- Changes fragmentation, limited resolution
- Causes correlation of load and response time
- Break dependencies, daily cycle

orkload Resampling

- Break log into users
 - Multiple sub-logs with jobs of one user
 - Maintain sessions, locality
 - Create pool of users
- Resample to create new log
 - Select users from the pool (with repetitions)
 - Mix and match in random way
 - Maintain synchronism with daily/weekly cycle

Resampling Details

- Long term users active for more than 12 weeks
 - Initially all there but start at random week
 - Restart as needed as simulation continues
- Short term users up to 12 weeks
 - Initially number in average week
 - Find average arrival rate of new users
 - In simulations add new users each week
- Edge users only within 4 weeks of start/end – Don't use them

Resampling Benefits

- Can change the number of users
 - More users => higher load
 - Less users => lower load
- Create longer log => converging simulation
- Create multiple instances => confidence intervals
- Combine data from many logs => improve representativeness

Resampling Benefits

without

losing

realism

ICP

- Can change the number of users
 - More users => higher load
 - Less users => lower load
- Create longer log => converging simulation
- Create multiple instaintervals
- Combine data from many l gs = improve representativeness

The Feedback Problem

- Users react to load
 - Good performance => submit more jobs
 - Lousy performance => go home
- More users does not necessarily translate to higher load
 - Higher congestion => bad performance => some users reduce their activity
- So resampling with more/less users isn't really a good solution for changing load

Incorporating feedback Work with Edi Shmueli

Users are Humans

- They react to system state
 - Good performance => submit more jobs
 - Lousy performance => go home
- They game the system
 - Understand the scheduler
 - Provide false data to cheat it
- They are myopic

– Personal interest rather than global wellness

Aside: Runtime Estimates

- If runtime estimate is low, job has a better chance to backfill
- If it is too low, job wil be killed
- So users are motivate to provide accurate estimates

Performance Feedback

- User behavior leads to negative feedback
 - If load is high they reduce submitting of jobs
 - If load is low they submit more jobs
- Captures interaction between users
- <u>Scheduler performance can affect workload</u>
- There is no such thing as "the real workload"
- Workload logs reflect the scheduler on the logged system, and its interaction with its users

Implications for Performance Evaluation

- Comparing schedulers "under same conditions" means with same users (not with same log!)
- Performance metrics change
 - Better scheduler => more jobs => higher throughput
 - Better scheduler => more jobs => maybe higher response time (considered worse!)
- Using a user feedback model counteracts efforts to change load

Resampling with Feedback

Resampling with Feedback

Too Much Stability

- Consistent use of user feedback model implies stability (feedback is negative)
- But real systems experience large load fluctuations
- Real systems (and users) have more variability and complexity

Complexity and realism Work with David Krakov

EASY Simulations

- Scheduler has simple algorithm (e.g. EASY backfilling)
- Jobs have simple requirements
 - Number of processors
 - Maybe also requested runtime
- Arrivals from log (possibly modified by feedback)
- Possible to achieve high utilization under high load

Easy to Understand Results

Real Scheduling

- Algorithm may be complex (e.g. MAUI with dozens of parameters)
- Jobs have multiple additional requirements
 - Memory
 - Software licenses
 - Hardware and software configurations
 - Fairness at user or group level
- Constraints limit achievable utilization

Heatmaps

- Show detailed performance characteristics
- Analysis at job level
- X is utilization experienced by job
- Y is performance experienced by job
- Shading is number of jobs with given X and ¹⁰⁰.
 Y

Metrics

Comparison with Simulation

Comparison with Simulation

Comparison with Simulation

Results

Simulations do not reflect reality

 Real systems seem to be more constrained

- Averages do not represent variability
 - Variability in load
 - Variability in performance
- No correlation of load and performance at job level

conclusions

Life Is Tough

- Not sure that performance vs. load is meaningful
- Feedback is an important effect
- EASY simulations are over-simplified
- There's a lot we don't know or understand
- There's no single true answer

– Need to deal with variability

Academia vs. "Real People"

- Academia doesn't know about all the constraints faced by real schedulers
- Academia doesn't know about the considerations and goals of real schedulers
- Academia doesn't contribute real ideas or solutions

What You Can Do

- Be aware of constraints on scheduling
 - Need to be known for relevant evaluations
 - Maybe they can be removed?
- Try to understand users
 - What they want from the system
 - How this can be expressed as a metric
 - How it affects their behavior
- Collect workload data and contribute to the Parallel Workloads Archive
 - What should be added to the standard workload format?
- Write papers for JSSPP workshop

iGracias!

¿preguntas?