
Aalto University Site Report

Janne Blomqvist, Ivan Degtyarenko, Mikko Hakala

2014-09-24



Aalto University

I Fusion of 3 independent Universities in 2010

I Helsinki University of Technology
I Helsinki School of Economics
I University of Art and Design

I Organized in 6 �schools� (=faculties)

I 20000 students

I 5000 faculty and sta�

I 370 professors



Aalto School of Science (Aalto SCI)

I �Basic Science� faculty in Aalto University.

I Math, Physics, Biomedical Engineering, Computer Science,
etc.

I Science-IT project (that's us!) takes care of scienti�c
computing infrastructure.

I Procurement
I Running of cluster(s)
I User education



Computational Science @Aalto-SCI

I Density Functional Theory

I Molecular Dynamics

I Statistical Physics (Phase transitions etc.)

I Quantum Many-Body Theory

I Nuclear reactor physics (�ssion & fusion)

I Brain imaging analysis

I Machine learning

I Genomic analysis

I Speech and language processing

I Image analysis



Science-IT project

I Organized per a �stakeholder� model where major users
provide money for personnel and procurements.

I Currently 3 departments are the major stakeholders.

I New users �opt-in�, usage is free as long as it's reasonably
small.



Triton cluster

I Our current �workhorse� cluster.

I Standard x86(-64) servers of varying ages.

I 6-core Opteron CPU's.
I 6-core Xeon Westmere CPU's.
I 10-core Xeon Ivy Bridge CPU's.

I Most servers are 2-socket ones. A couple �hugemem� nodes
with 1 TB RAM and 4x 8-core Xeon X7542 for jobs with large
memory requirements.

I A few GPU nodes.

I Total ~550 nodes, ~7000 cores.

I Part of Finnish Grid Initiative (FGI). Possible for external users
to run jobs via grid environment (20% share).



Slurm@Triton

I Used Slurm since beginning on Triton (SGE on previous
cluster).

I Generally very happy with it.

I The community is nice.

I Have implemented a few features and contributed some
bug�xes over the years.

I Two main compute partitions, �batch� and �short�, mostly
overlapping.

I Constraints to force speci�c hw (e.g. �constraint=xeonib).
I QoS to boost priority for short jobs.
I job submit plugin selects QoS and partition automatically

depending on job timelimit if not explicitly speci�ed.



Ticket-Based Fairshare algorithm 1/4

I Due to the stakeholder model, it's important for us that the
fairshare algorithm drives towards equilbrium for di�erent
parent accounts

I This wasn't the case with the original fairshare algorithm due
to di�erent usage from di�erent departments

I So we created the Ticket-Based Fairshare algorithm.

I PriorityFlags=Ticket_Based , originally
PriorityType=priority/multifactor2 in Slurm 2.5.



Ticket-Based Fairshare algorithm 2/4

I Start with a number of tickets at the root of the account tree.

I Tickets are distributed to active child nodes in the tree
proportional to the fair share weights (active = account or
subaccount has pending jobs).

I In the end, the user with the most tickets get the fair-share
priority 1.0, the rest of the active users proportional to how
many tickets they have compared to the user with the most
tickets.



Ticket-Based Fairshare algorithm 3/4

I The good

I Much better at balancing department usage compared to the
original fairshare algorithm.

I Easy to balance the fairshare weight vs. other
priority_multifactor weights since the highest priority job
always has fair-share priority 1.0.

I The bad

I Still happens that department usage can get unbalanced.
Consider e.g. department X with 1 (very) active user vs.
department Y with N active users. Since the dept. X tickets
are all given to 1 user vs. dept. Y tickets are distributed over
N users, dept. X user gets higher priority even though dept. Y
may have much higher fair share factor.

I Prioritites �uctuate depending on the queue situation,
unintuitive for users.



Ticket-based fair-share algorithm 4/4

I Subsequently several other fairshare algorithms have been
proposed.

I Depth-oblivious (CEA), see SUG 2013 slides.

I Level-based Fair Tree (BYU), SUG 2014 presentation earlier
today.

I Haven't yet had time to try them out.



Triton usage pro�le

I We have a lot of users who submit lots of serial jobs (yes,
array jobs are awesome for this).

I We also have users who submit small and medium-sized
parallel jobs (a few hundred cpu's at most). Mostly physics +
a bit of hadoop etc.

I We don't have really large parallel jobs - users requiring this
tend to use the national level resources for such jobs.

I Turns out our workload is challenging for slurm

I Due to lots of small jobs, we want fast scheduling. Additionaly,
sometimes these small jobs are also very short.

I Due to the parallel and/or long-running jobs, we want
sophisticated scheduling, with deep back�ll lookahead etc.

I Finding a suitable combination of scheduler parameters is a
whack-a-mole game!



slurm utility

I Beginner users where often confused about the variety of slurm
commands

I Created a wrapper for various slurm querying functions

I Under the hood, uses squeue, scontrol, sshare, sacct, sstat,
sprio, etc. as appropriate

I Only read-only commands, so always safe to use (doesn't
accidentally kill all your jobs!)

https://github.com/jabl/slurm_tool



Slurm gripes & wishlist 1/2

I Behavior under load & scalability.

I srun job steps failing due to �send/recv timeout� makes users
very angry. Possible to increase the srun timeout when running
inside an allocation?

I Longer term?

I More e�cient connection handling, e.g. non-blocking sockets
with epoll() instead of thread-per-connection?

I More �ne-grained locking, or something di�erent such as
RCU?

I Resiliency

I In backup mode, every connection waits a while trying the
master before trying the backup.

I No master/slave for slurmdbd.
I Requirement for a shared state save directory enlarges the

problem to also require a high availability NFS server.
I Push state save problem to some lightweight replicated

key-value DB (Redis/etcd?). StateSavePlugin=?



Slurm gripes & wishlist 2/2

I Account memory/gres/etc in addition to cpu-secs. Handle
cpu's with di�erent performance. Bug #858 has some
interesting work in this direction by Ryan Cox, BYU.

I Containers

I Lots of work in this area thanks to cloud computing.
I Checkpoint - migrate (reschedule!) - restart would be nice.

I E.g. pack serial jobs to allow a parallel �exclusive job to start.
I Maintenance without waiting for long-running jobs to �nish

I libcontainer (docker/google/redhat/parallels/ubuntu)

I Job as a container?

I Container job? �My software requires Ubuntu 10.10!�

I A pony.



That's all, folks

Thank you for listening. Questions?


