
 on Sherlock

STANFORD RESEARCH COMPUTING CENTER

Slurm User Group 2019
17-18 September 2019 - Salt Lake City, Utah, USA

Kilian Cavalotti
Stanford Research Computing Center

Hi!

My name is Kilian Cavalotti
I'm HPC Technical Lead & Architect at Stanford University

I manage Sherlock, the Stanford shared HPC cluster

Build & support a
comprehensive program and
capabilities to advance
computational and
data-intensive research at
Stanford

Stanford Research
Computing Center

Our mission

▸ a shared HPC cluster, operated by the Stanford
Research Computing Center

▸ available at no cost to all Stanford Faculty
members and their research teams to support
sponsored research

▸ a condo cluster, where PIs can become owners
▹ they get their own Slurm partition

▹ they get access to all the other owner's nodes when they're not in
use (owner jobs preempt background jobs)

Sherlock is

http://srcc.stanford.edu/
http://srcc.stanford.edu/

A little bit of history

2014 | Sherlock opens for production
initial seed of 120 nodes, funded by the University Provost

2016 | Sherlock reaches capacity
FDR Infiniband fabric maxed out, ~800 PI-owned nodes

2017 | Sherlock 2.0
complete hardware, platform, software and services refresh

2019 | Sherlock 2.0 reaches capacity
EDR IB fabric maxed out

2020 | Sherlock 3.0
hardware refresh, HDR IB fabric rollout

▸ 15x growth in 5 years

▸ >90% of Sherlock's nodes are owners nodes

Successful model

Sherlock
as of today, things change on a weekly basis

▸ 1,502 compute nodes
16 → 64 CPU cores, 64 → 3TB RAM
from Ivy Bridge to Skylake

▸ 780 GPUs
from K20s to V100 SXM2 & TITANs
4x or 8x GPUs per node

▸ 2 IB fabrics
2:1 FDR + 2:1 EDR

▸ Slurm 18.08.8
CentOS 7.6

6 PB scratch + 12 PB long-term storage

29,192 CPU cores

>4,500 users
from all the 7 schools, SLAC, Stanford institutes, etc.
>720 PI groups, 125 owner groups
over 3,500 support tickets per year

Overall

from astrophysics to the music department

And more...

46 racks

450 kW

96 IB switches

7,248 IB cables

17 server models

4 CPU/GPU generations

117 Slurm partitions

100,000 jobs/day

15 million jobs since Jan 01

2.12 PFlops
FP64, FWIW, YMMV

peaks at 250 jobs/s

job #50,000,000 submitted on Sep. 10

Slurm partitions

▸ Public partitions
Anybody can use

▹ normal: regular CPU nodes
▹ gpu: GPU nodes
▹ bigmem: large memory nodes
▹ dev: interactive/debug nodes

▸ Owner partitions
Nodes purchased by PIs, one partition per owner

▸ Owners partition
Preemptable partition for background owners' jobs

Partition structure

normal

owners

dev gpu bigmem

A B C

D

E

F G

"Public" partitions

▸ All users can submit jobs there

Owner partitions

▸ PI A (only) can submit to partition "A"

▸ PI A can submit to "owners" and run on
nodes from PI B

▸ When PI B submits to "B", PI A's job on B is
preempted

Triggers
https://slurm.schedmd.com/strigger.html

triggers are generated when specific Slurm events
occur, and can be used to run actions (scripts)

▸ events could be on the controller, the
database daemon, jobs, nodes…

▸ we use triggers… a lot!
▹ for notifications and monitoring

▹ for automatic recovery actions (w/ NHC)

Triggers

RES_TYPE RES_ID TYPE OFFSET USER FLAGS PROGRAM
node * down 0 slurm PERM down.sh
node * drained 0 slurm PERM drained.sh
node * up 0 slurm PERM up.sh
slurmctld * primary_slurmctld_resumed_operation 0 slurm PERM primary_slurmctld_resumed_op.sh
slurmctld * primary_slurmctld_resumed_control 0 slurm PERM primary_slurmctld_resumed_control.sh
slurmctld * backup_slurmctld_resumed_operation 0 slurm PERM backup_slurmctld_resumed_operation.sh
database * primary_database_resumed_operation 0 slurm PERM primary_database_resumed_operation.sh
slurmdbd * primary_slurmdbd_resumed_operation 0 slurm PERM primary_slurmdbd_resumed_operation.sh
slurmdbd * primary_slurmdbd_failure 0 slurm PERM primary_slurmdbd_failure.sh
slurmctld * backup_slurmctld_failure 0 slurm PERM backup_slurmctld_failure.sh
slurmctld * primary_slurmctld_failure 0 slurm PERM primary_slurmctld_failure.sh
slurmctld * backup_slurmctld_assumed_control 0 slurm PERM backup_slurmctld_assumed_control.sh
database * primary_database_failure 0 slurm PERM primary_database_failure.sh
slurmctld * primary_slurmctld_acct_buffer_full 0 slurm PERM primary_slurmctld_acct_buffer_full.sh

When problems happen on nodes:
▸ NHC detects the issue, drains nodes

▸ script associated w/ events is triggered

▸ sysadmins are notified

▸ corrective actions are taken

On slurmctld / slurmdb events:

▸ sysadmins are notified
▸ events are recorded

RES_TYPE RES_ID TYPE
node * down
node * drained
node * up
slurmctld * primary_slurmctld_resumed_operation
slurmctld * primary_slurmctld_resumed_control
slurmctld * backup_slurmctld_resumed_operation
database * primary_database_resumed_operation
slurmdbd * primary_slurmdbd_resumed_operation
slurmdbd * primary_slurmdbd_failure
slurmctld * backup_slurmctld_failure
slurmctld * primary_slurmctld_failure
slurmctld * backup_slurmctld_assumed_control
database * primary_database_failure
slurmctld * primary_slurmctld_acct_buffer_full

Triggers

Node weights

▸ get the best performance out of the box
▹ provide the highest-end CPU when possible

▸ don't waste specialized resources
▹ when not explicitly requested, allocate specialty nodes in last resort

▸ encode node characteristics in node weights
▹ nodes with lower weight are selected first

▹ more memory / GRES = higher weight, so nodes are selected last

▹ more recent CPUs = lower weight, give the best performance by default

Weight mask
Weight mask: 1 | #GRES | Memory | #Cores | CPUgen | 1
prefix is to avoid octal conversion
suffix is to avoid having null weights
#
Values:
#GRES none: 0 Memory 64 GB: 0 #Cores 16: 0 CPUgen ???: 3
1 GPU: 1 96 GB: 1 20: 1 CSL: 4
2 GPU: 2 128 GB: 2 24: 2 SKX: 5
3 GPU: 3 256 GB: 3 28: 3 BDW: 6
[...]

BDW | 20c | 128GB
NodeName=[...] \
 Sockets=2 CoresPerSocket=10 \
 RealMemory=128000 \
 Weight=102161 \
 Feature="CPU_MNF:INTEL,CPU_GEN:BDW,CPU_SKU:E5-2640v4,CPU_FRQ:2.40GHz"

▸ Example: 20-core Broadwell w/ 128GB RAM, no GPU

Weight=102161

Recurrent jobs

- user: “can I do cron?”

- sysadmin: “nope, but you can Slurm it!”

Cron job Recurrent job

Dedicated resources for the task ✖ ✔

Persistent across node reinstallations ✖ ✔

Unique, controlled execution ✖ ✔

Precise schedule ✔ ✖

Recurrent jobs

▸ weekly execution
▹ execution deferred by at least 7 days

▸ ensure unique running instance

▸ email notification on failure

▸ works great for backup, data sync jobs

#!/bin/bash
#SBATCH --job-name=cron
#SBATCH --begin=now+7days
#SBATCH --dependency=singleton
#SBATCH --time=00:10:00
#SBATCH --mail-type=FAIL

./my_cron_script

Resubmit the job for the next execution
sbatch $0

Persistent jobs

- user: “can I have a database server?”

- sysadmin: “nope, but you can Slurm it!”

▸ run untils explicitly scancel'ed

▸ signal itself before end of allocated time

▸ resubmit itself on termination

▸ re-runs right away (maybe)
▹ more adapted to partitions with lower wait times

▸ persistent $JOBID!

#!/bin/bash
#SBATCH --job-name=persistent
#SBATCH --dependency=singleton
#SBATCH --time=24:00:00
#SBATCH --signal=B:SIGUSR1@90

catch the SIGUSR1 signal
_resubmit() {
 echo "$(date): job $SLURM_JOBID received SIGUSR1 at $(date), re-queueing"
 scontrol requeue $SLURM_JOBID
}
trap _resubmit SIGUSR1

./my_app &
wait

▸ signal SIGUSR1 trapped by the sbatch step
▹ main app needs to be running in the background for signal to be trapped

▸ scontrol requeue ensures persistent $JOBID
▹ for easier job dependencies

▸ works great for database servers (MySQL, PostgreSQL...)

Persistent jobs

Wait, a database server in a job?

Sure, why not?

▸ resources are guaranteed and limited

▸ database service can run with user privileges

▸ db service jobs can be relocated to different compute
nodes based on availability

▸ complete step-by-step instructions at
▹ https://www.sherlock.stanford.edu/docs/software/using/mariadb/
▹ https://www.sherlock.stanford.edu/docs/software/using/postgresql/

https://www.sherlock.stanford.edu/docs/software/using/mariadb/
https://www.sherlock.stanford.edu/docs/software/using/postgresql/

Command caching

- user: “are my jobs running? Let's watch -n.1 squeue”

- slurmctld: “aaargh!”

▸ goes in users' profile, and cache squeue results for 10s

▸ works for all status commands (sstat, sacct, sinfo)

Pseudo shell
_cache_cmd() { # $1: cmd, $2: cache lifetime (sec)
 if cached_output is still valid; then
 echo "$cached_output"
 else
 execute $1 and cache output for $2 seconds
 fi
}

define command alias
squeue() { _cache_cmd /usr/bin/squeue 10 "$@"; }

Job script archiving

- user: “my job failed! why?”

- sysadmin: “what does your submission script look like?”

- user: “uuuh...”

▸ we archive job scripts
▹ in PrologSlurmctld

▹

▹

SLURM_SPOOLDIR="/var/spool/slurm.state"

SLURM_JOBSTORE="/share/admin/logs/slurm/jobs"

jobid=${SLURM_ARRAY_JOB_ID:-$SLURM_JOBID}

j_hsh=${jobid: -1}

cp $SLURM_SPOOLDIR/hash.${jobid: -1}/job.$jobid/environment $JOB_STORE/env

cp $SLURM_SPOOLDIR/hash.${jobid: -1}/job.$jobid/script $JOB_STORE/script

Job submit plugin

▸ for a long time: we don't need no job submit plugin!
▸ nowadays: how did we ever worked without it?

▸ we use it to:

▹ automatically assign licenses to jobs
▹ drop un-authorized options (--reboot, --exclusive in shared partitions)
▹ provide helpful messages to users (when their job is rejected)

[kilian@sh-ln04 login ~]$ srun -p gpu --pty bash
srun: error: ===
srun: error: ERROR: missing GPU request, job not submitted
srun: error: ===
srun: error: Jobs submitted to the gpu partition must explicitly request GPUs, by using
srun: error: the --gres option.
srun: error: ---
srun: error: QOSMinGRES
srun: error: Unable to allocate resources: Job violates accounting/QOS policy (job submit
limit, user's size and/or time limits)

GPU mode SPANK plugin

▸ GPU compute modes
▹ EXCLUSIVE_PROCESS by default, good for most cases
▹ but some applications need multiple contexts on GPU
▹ changing GPU compute mode requires root

▸ https://github.com/stanford-rc/slurm-spank-gpu_cmode

▹ SPANK plugin to let users specify the GPU compute mode they need

$ srun --help
 --gpu_cmode=<shared|exclusive|prohibited>
 Set the GPU compute mode on the allocated GPUs to
 shared, exclusive or prohibited. Default is
 Exclusive

$ srun --gres gpu:1 --gpu_cmode=shared "nvidia-smi --query-gpu=compute_mode --format=csv,noheader"
Default
$ srun --gres gpu:1 --gpu_cmode=exclusive nvidia-smi --query-gpu=compute_mode --format=csv,noheader
Exclusive_Process

https://github.com/stanford-rc/slurm-spank-gpu_cmode

Expected wait times

- user: “how long will my job wait?”

- sysadmin: “why don't we ask the scheduler?”

▸ profile runs srun --test-only at login
▹ gives a user-specific estimation of typical job wait time, including fairshare

▹ consumes one jobid, but ¯_(ツ)_/¯

$ ssh sherlock
[...]

Sherlock status | OPERATIONAL | uptime : 99.989%
 usage | normal: 98.44% | use/tot: 1,764/ 1,792 cores
 | global: 93.66% | use/tot: 26,732/28,540 cores

kilian cur.jobs | 0 RUNNING (0 core), 0 PENDING (0 core)
 job wait | 16 hours and 7 minutes in normal

Slurm dashboards

▸ overall usage
▸ scheduler internals
▸ queue info
▸ nodes states
▸ node utilization
▸ partition usage

Feedback

▸ Slurm is an amazing piece of software
▹ 100,000 jobs/day on heterogeneous system with 1,000s of

users and 100s of partitions → 95% utilization

▸ support is stellar
▹ yes, you need support contract with SchedMD)

▹ much better than much larger ISVs or HW vendors

▹ a few site down situations resolved in a matter of hours

Feedback

▸ but… there were site down situations
▹ a significant number of segfaults

▹ major version updates are sometimes a challenge
▹ DB conversions, unexpected config changes…

▹ x.0 versions not for the faint of heart :)

▸ bugs.schedmd.com is a great source of information
▹ can find a lot of details about Slurm internals there

▹ we use it a lot (reported 122 bugs/requests so far)

▹ did you know there's a bug report RSS feed?

THANKS!

Any question?
You can find me at kilian@stanford.edu

https://github.com/stanford-rc

