

Slurm Configuration Impact on Benchmarking

José A. Moríñigo, Manuel Rodríguez-Pascual, Rafael Mayo-García

CIEMAT - Dept. Technology Avda. Complutense 40, Madrid 28040, SPAIN

Slurm User Group Meeting'16 - Athens, Greece – Sept. 26-27, 2016

- Introduction
- Facility
- Design of experiments
- NAS Parallel Benchmarks
- Results
- What's next?

- Prospect on HPC environments?
 - App's with very different requirements may coexist
 - Execution time
 - Degree of paralelism
 - Required computational resources
 - % serial App's in clusters perturbations?
 - • • •

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

- Prospect on HPC environments?
 - App's with very different requirements may coexist
 - Execution time
 - Degree of paralelism
 - Required computational resources
 - % serial App's in clusters perturbations?
 - • • •

A place for sharing resources is foreseen

...but how App's performance is affected?:

- Weak scaling \leftrightarrow Strong scaling
- CPU bounded \leftrightarrow Memory bounded

. . . .

- This scenario throws a bunch of questions:
 - What to do with partially-filled multicore-CPUs?
 - Sharing ⇒ Competition for resources, slow-down Always happens?
 - How is the performance sensitivity to the Application itself?
 - CPU- vs. Memory-bounded
 - To which extent the system architecture drives App's behaviour?
 - Best / Optimum strategy?

Answers will lead to better exploitation and costeffective strategies using HPC facilities

- Motivation of this work
 - Focus: results (answers) will impact on

specific scheduling decisions

Maximize performance Sweet point?

- Motivation of this work
 - Focus: results (answers) will impact on

specific scheduling decisions

Maximize performance Sweet point?

- Trade-off to clarify sensitivity to Slurm setups:
 - Behaviour of sci-App's on modern HPC facilities
 - Measuring what happens at ideal and "production" computing conditions at definite scenarios.

- Motivation of this work
 - Focus: results (answers) will impact on

specific scheduling decisions

Minimize energy consumption Maximize performance Sweet point?

- Trade-off to clarify sensitivity to Slurm setups:
 - Behaviour of sci-App's on modern HPC facilities
 - Measuring what happens at ideal and "production" computing conditions at definite scenarios.

... and what about exploring tasks migration as a tool to improve computational efficiency of App's? 8

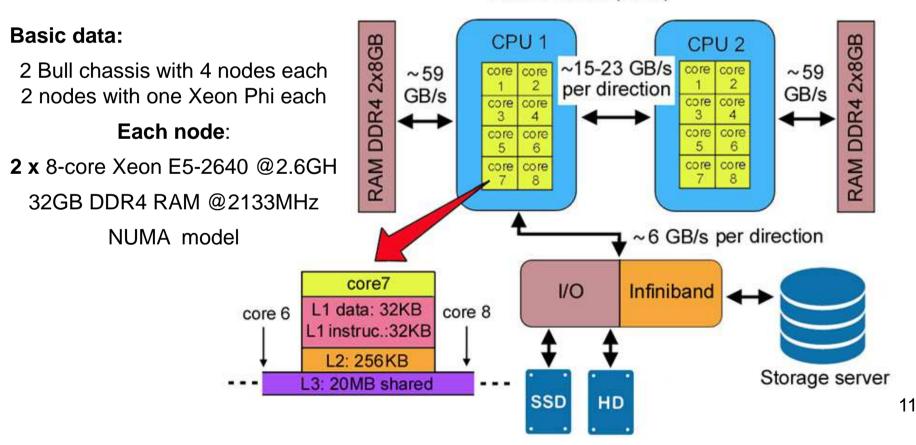
- Introduction
- Facility
- NAS Parallel Benchmarks
- Design of experiments
- Results
- What's next?

- Starting Point: Our HPC + Slurm characterization
 - 2 families of Benchmarks:
 - 1.- System Benchmarks: "raw" performance of HPC components:

OSU Micro-Benchmark

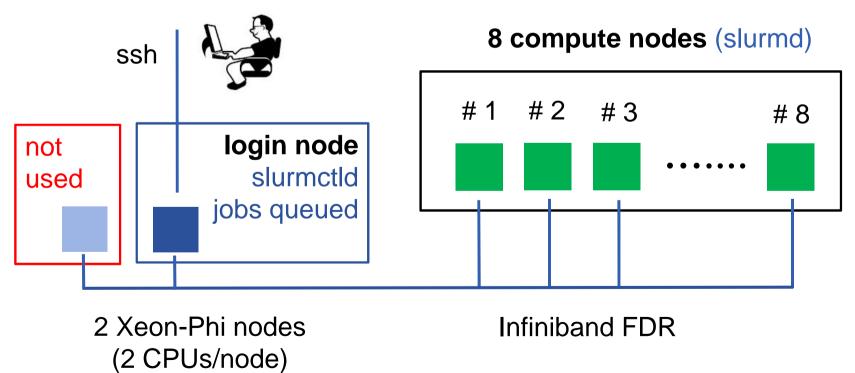
STREAM (Ohio State Uni) • Bonnie++
 Intel Memory Latency Checker

2. – Scientific Application Benchmarks: behaviour when running real applications:


NAS (more on this later...)

- Cluster ACME: state-of-the-art, for research
 - 10 nodes:
 - 8 compute nodes (128 cores)
 - 2 Xeon-Phi nodes

ACME nodes (2015)


ACME cluster: state-of-the-art, for research - 10 nodes: Intra-node BW Ratio = - 3.5 8 compute nodes (128 cores) Inter-node BW 2 Xeon-Phi nodes ACME nodes (2015) **Basic data:** CPU 1 DDR4 2x8GB CPU 2 **2x8GB** ~15-23 GB/s 2 Bull chassis with 4 nodes each core core ~59 ~59 core core 2 2 1 per direction 1 GB/s 2 nodes with one Xeon Phi each GB/s core **RAM DDR4** core core core 3 3 4 4 Each node: core core core core 5 6 5 6 RAM 2 x 8-core Xeon E5-2640 @2.6GH core core core core 7 7 8 8 32GB DDR4 RAM @2133MHz ~6 GB/s per direction NUMA model core7 1/0 Infiniband L1 data: 32KB core 8 core 6 L1 instruc.:32KB L2: 256KB Storage server L3: 20MB shared SSD HD 12

- ACME cluster with Slurm
 - version 16.05
 - mvapich2-2.2b
 - Requirement: minimize perturbations during benchmarking

- Introduction
- Facility
- NAS Parallel Benchmarks
- Design of experiments
- Results
- What's next?

DE ECONOMÍA Y COMPETITIVIDAD

NAS Parallel Benchmarks (NPB) v. 2.0:

Numerical Aerodynamic Simulator (NASA)

(1991 – present, added kernels in recent versions).

- Focus on Aerosciences
- Fortran
- MPI-based
- Building blocks:

Benchmark code	Class A	Class B	Class C
Embarrassingly parallel (EP)	2 ²⁸	2 ³⁰	2 ³²
Multigrid (MG)	256 ³	256 ³	512 ³
Conjugate gradient (CG)	14000	75000	150000
3-D FFT PDE (FT)	$256^2 \times 128$	512×256 ²	512 ³
Integer sort (IS)	2 ²³	2 ²⁵	2 ²⁷
LU solver (LU)	64 ³	102 ³	162 ³
Pentadiagonal solver (SP)	64 ³	102 ³	162 ³
Block tridiagonal solver (BT)	64 ³	102 ³	162 ³

7 kernels: BT, CG, LU, IS, EP, FT, MG

CPU- bounded Memory-bounded

Usefulness:

It is expected that results, in terms of **computational efficiency**, be of interest as feedback to sci-groups of production clusters.

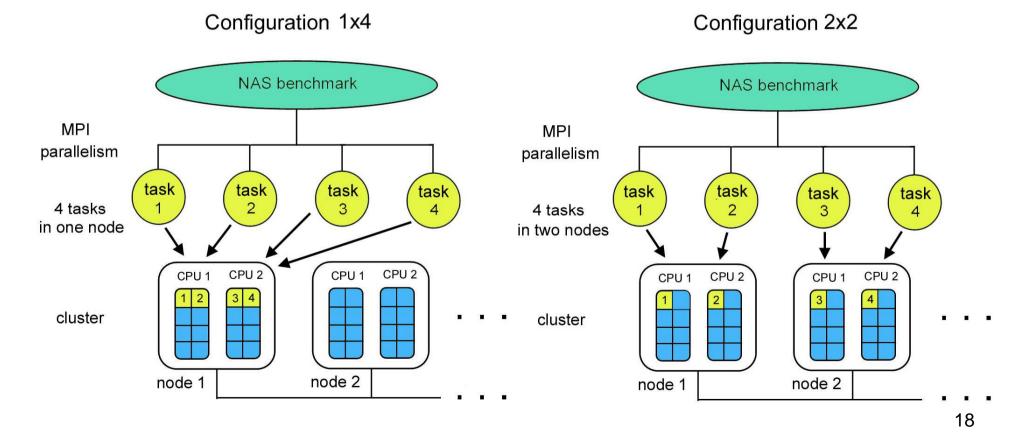
- NAS kernels are scalable in size: A, B, C, D,... \rightarrow Classes
 - Eg. **MG** (Multi-Grid):

Iterates a 3D scalar Poisson eqn. using a set of nested grids.

Proble	em	↑ Memory	↑ CPU
size	e	-	-
	Class	Problem Size	Iterations
	Α	256^{3}	4
	В	256^{3}	20
	С	512^{3}	20

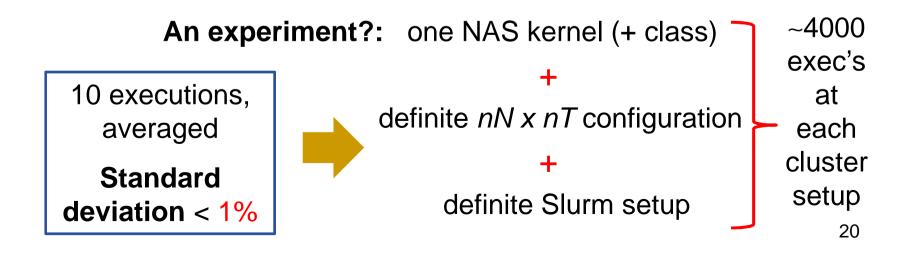
MG is a typical case of Memory-bounded algorithm...

...most kernels are a mixture of Memory plus CPU-demanding


- Introduction
- Facility
- NAS Parallel Benchmarks
- Design of experiments
- Results
- What's next?

- Some definitions
 - Mapping NAS kernels as MPI tasks onto groups of cores
 - **Configuration**, linked to the job:

nN x nT = [# Nodes] x [# MPI Tasks]



- Executions under Slurm setups:
 - Dedicated Network (reference setup): 1 job at the same time running in the cluster.
 - Dedicated Cores: one-to-one assignment of cores to MPI tasks of the job.

- Executions under Slurm setups:
 - Dedicated Network (reference setup): 1 job at the same time running in the cluster.
 - Dedicated Cores: one-to-one assignment of cores to MPI tasks of the job.
 - Dedicated Nodes: entire node asigned to execute MPI task of the same job.
 - Dedicated Sockets: a socket executes MPI tasks of the same jobs (no part of another job may share it during execution).

Slurm configuration
 Modify slurm.conf :

Setup:

. . .

. . .

SCHEDULING
#SchedulerType=sched/backfill
#SchedulerType=sched/builtin
SelectType=select/linear

Design of experiments

Dedicated Nodes:

SelectType=select/linear

Dedicated Sockets:

SelectType=select/cons_res SelectTypeParameters=CR_Socket

Dedicated Cores:

SelectType=select/cons_res SelectTypeParameters=CR_CPU

(cons_res: consumable resources)

Nodes definition:

NodeName=acme[11-14,21-24] CPUs=16 Sockets=2 CoresPerSocket=8 ThreadsPerCore=1 State=UNKNOWN

No preemption

- Parameters
 - Range of partitions: 1 (serial), 2, 4, 64, 128 tasks (MPI ranks)

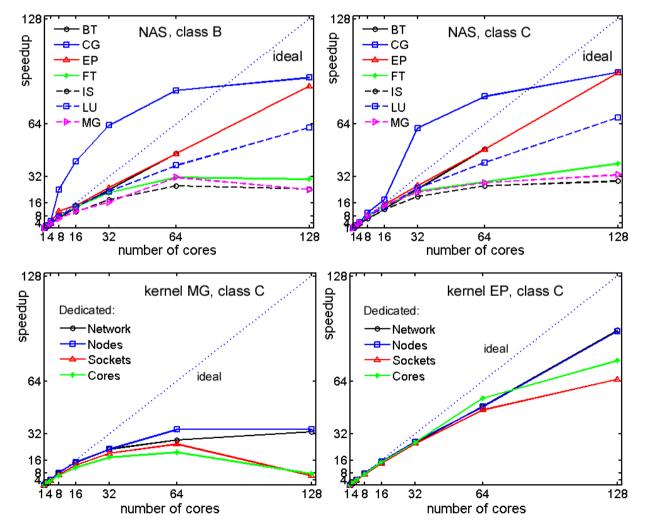
Degree of parallelism	1 (serial)	2	4	8	16	32	64	128
Number of jobs	210	360	630	720	840	540	400	170
Number of jobs (%) $<$	5.4	9.3	16.3	18.6	21.7	14	10.3	4.4
	> 3	30%						

- **Consistency:** 3 repetitions of experiments, then averaged.

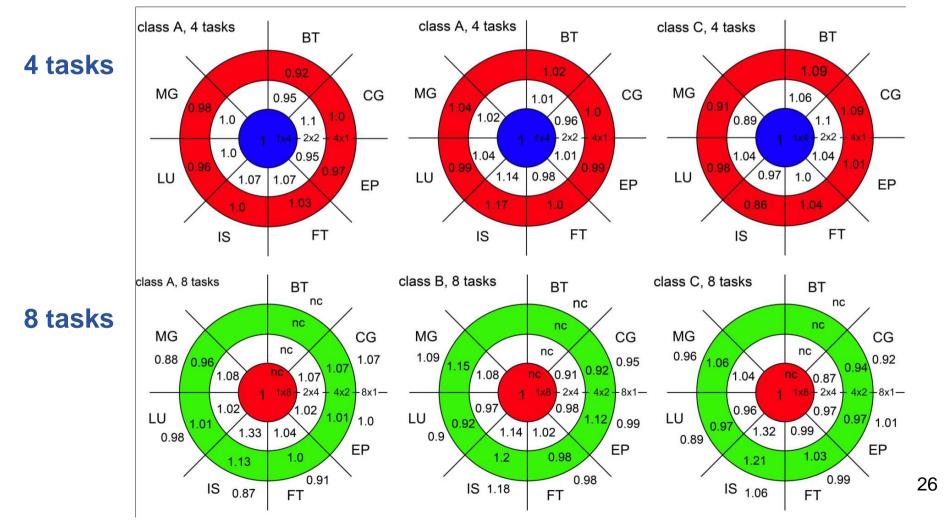
- Cost:

4 setups x {3 repetitions x ~4000 jobs/setup} = ~ **48,000 sent jobs**

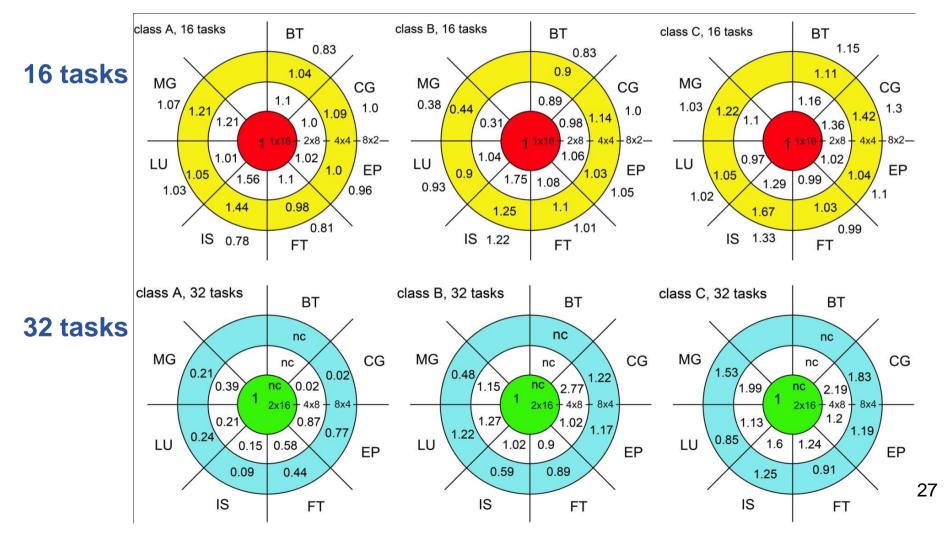
(~ 4000 jobs sent to the queue at once)


- Introduction
- Facility
- NAS Parallel Benchmarks
- Design of experiments
- Results
- What's next?

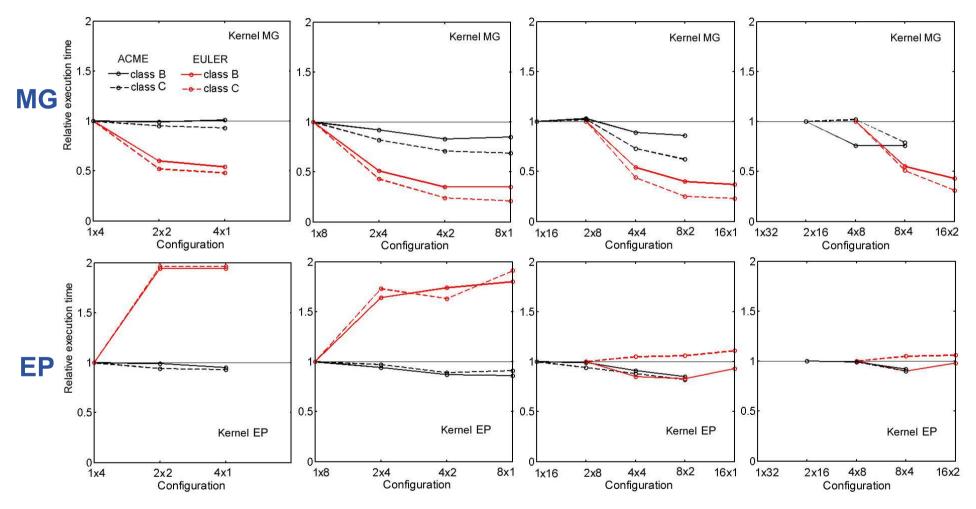
- NAS Strong-scaling: Far from optimum!
 - Resource competition is higher for Memory-bound kernels (MG)

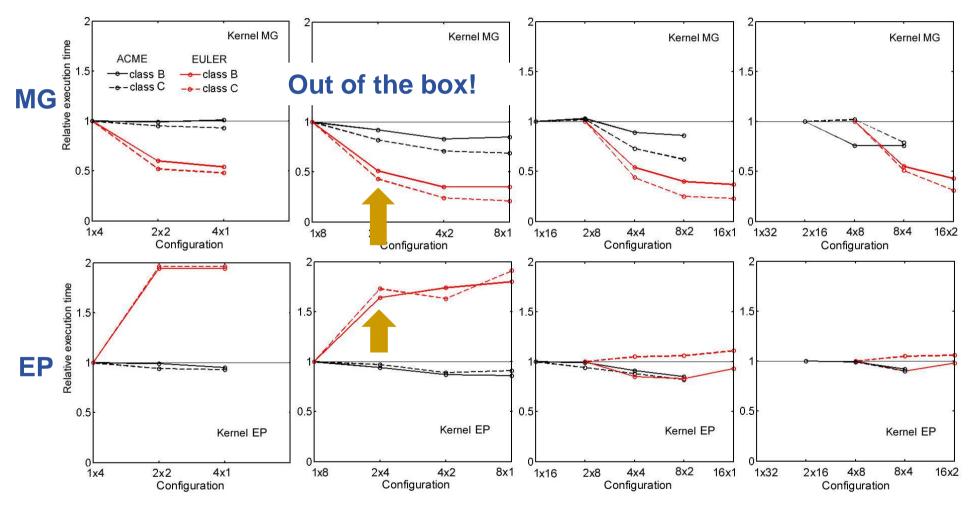


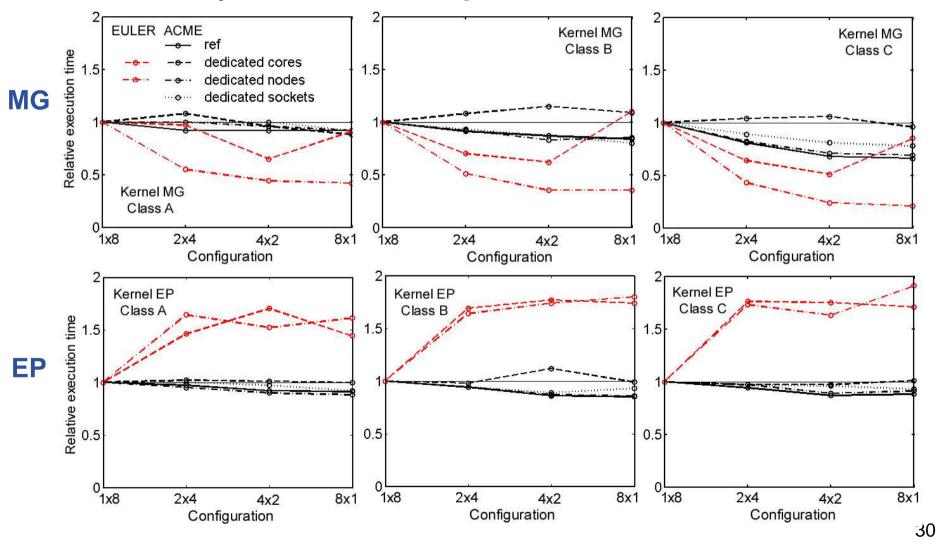
- **Dedicated Cores** setup: Realistic scenario in production
 - Nondimensional execution time (4, 8, 16, 32 tasks):



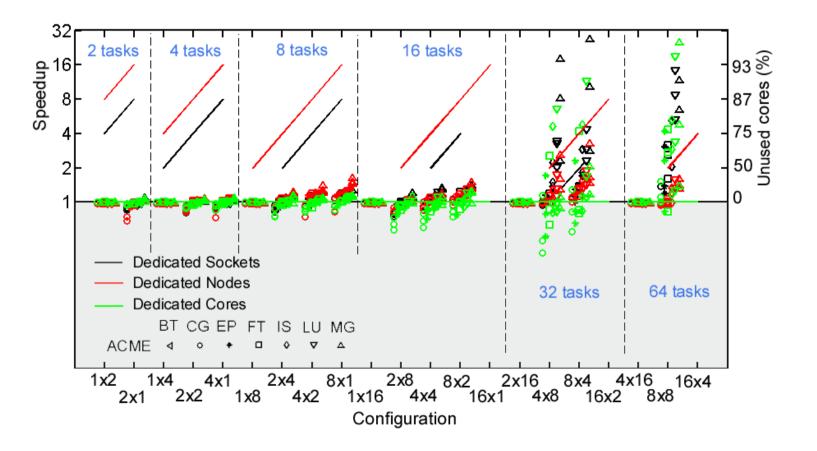
- Dedicated Cores setup (Cont.)
 - Nondimensional execution time (4, 8, **16, 32** tasks):




• Focus on kernels EP and MG & Dedicated Nodes setup

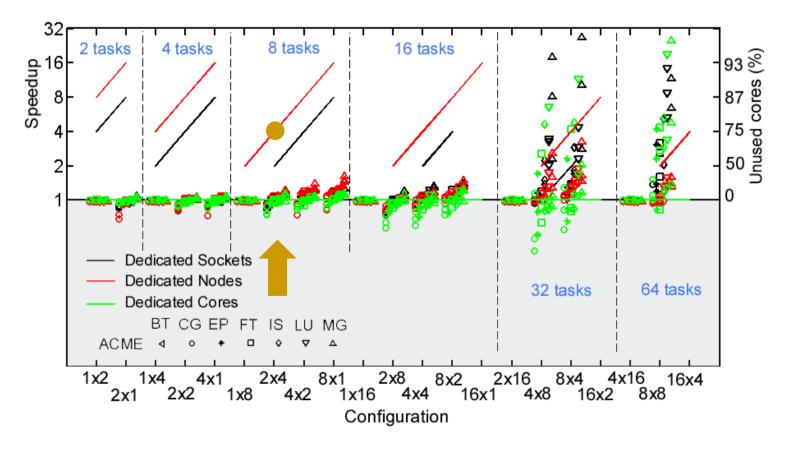

• Focus on kernels EP and MG & Dedicated Nodes setup

• Sensitivity to cluster setup: kernels MG and EP



- Maps of Speedup VS. Computational resources
 - How many unused resources?

⇒ Performance / Energy saving decisions



- Maps of Speedup VS. Computational resources
 - E.g.: 2x4 configuration
 - Dedicated Nodes → 4 tasks per socket: 75% unused
 - Dedicated **Cores** \rightarrow (idem): **0%** unused

- Introduction
- Facility
- NAS Parallel Benchmarks
- Design of experiments
- Results
- What's next?

- Lessons learnt:
 - Computational efficiency?
 - No one-rule regarding grouping MPI tasks.
 - Depends on the Slurm setup, but some statistical tendences.
 - Under Dedicated Cores setup, there are more cases at which grouping improves computational efficiency.

– Not enough!…

- Interest in MPI application codes (Materials, Fusion, Wind Energy,..)
- How do OpenMP + MPI hybrid codes modify the picture?

In perspective...

Execution of NAS, a first step (present study)

- Initial characterization of our HPC facility.

Ongoing: Execution of application (scientific) codes

- A real scenario
- Very different MPI-based codes at hand:

- How does the picture change?

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

THANK YOU!!!

CIEMAT – Avda. Complutense, 40 – 28040 Madrid, SPAIN

e-mail:

{josea.morinigo, manuel.rodriguez, rafael.mayo} @ciemat.es

Take a look at our group site! http://rdgroups.ciemat.es/web/sci-track/