
Artem Y. Polyakov, Joshua S. Ladd, Boris I. Karasev

Nov 16, 2017

Towards Exascale: Leveraging InfiniBand to accelerate the 

performance and scalability of Slurm jobstart.



© 2017 Mellanox Technologies 2

Agenda

• Problem description

• Slurm PMIx plugin status update

• Motivation of this work

• What is PMIx?

• RunTime Enviroment (RTE)

• Process Management Interface (PMI)

• PMIx endpoint exchange modes: full modex, direct modex, instant-on

• PMIx plugin (Slurm 16.05)

• High level overview of a Slurm RPC

• PMIx plugin (Slurm 17.11) – revamp of OOB channel

• Direct-connect feature

• Revamp of PMIx plugin collectives

• Early wireup feature

• Performance results for Open MPI



© 2017 Mellanox Technologies 3

Agenda

• Problem description

• Slurm PMIx plugin status update

• Motivation of this work

• What is PMIx?

• RunTime Enviroment (RTE)

• Process Management Interface (PMI)

• PMIx endpoint exchange modes: full modex, direct modex, instant-on

• PMIx plugin (Slurm 16.05)

• High level overview of a Slurm RPC

• PMIx plugin (Slurm 17.11) – revamp of OOB channel

• Direct-connect feature

• Revamp of PMIx plugin collectives

• Early wireup feature

• Performance results for Open MPI



© 2017 Mellanox Technologies 4

Slurm PMIx plugin status update

• Slurm 16.05

• PMIx plugin was provided by Mellanox in Oct, 2015 (commit 3089921)

• Supports PMIx v1.x

• Uses Slurm RPC for Out Of Band (OOB) communication (derived from PMI2 plugin)

• Slurm 17.02

• Bugfixing & maintenance

• Slurm 17.11

• Support for PMIx v2.x

• Support for TCP- and UCX-based communication infrastructure

• UCX: ./configure … --with-ucx=<ucx-path>

3089921ad9c0ad05372f955521b12f0c93ec73ec

https://github.com/SchedMD/slurm/commit/3089921ad9c0ad05372f955521b12f0c93ec73ec#diff-0a6a7422fb942b4a4eb662bccfcd1ef1


© 2017 Mellanox Technologies 5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

time, s

PPN

sRPC/dm

Motivation of this work

• OpenSHMEM jobstart with Slurm PMIx/direct modex (explained below)

• Time to perform shmem_init() is measured

• Significant performance degradation when Process Per Node (PPN) count was reaching available number of cores.

• Profiling identified that the bottleneck is the communication subsystem based on Slurm RPC (sRPC).

Measurements configuration:

• 32 nodes, 20 cores per node

• Varying PPN

• PMIx v1.2

• OMPI v2.x

• Slurm 16.05



© 2017 Mellanox Technologies 6

Agenda

• Problem description

• Slurm PMIx plugin status update

• Motivation of this work

• What is PMIx?

• RunTime Enviroment (RTE)

• Process Management Interface (PMI)

• PMIx endpoint exchange modes: full modex, direct modex, instant-on

• PMIx plugin (Slurm 16.05)

• High level overview of a Slurm RPC

• PMIx plugin (Slurm 17.11) – revamp of OOB channel

• Direct-connect feature

• Revamp of PMIx plugin collectives

• Early wireup feature

• Performance results for Open MPI



© 2017 Mellanox Technologies 7

RunTime Environment (RTE)

0
1

2

3

4

5

6

7
8

9

10

11

LOGICALLY

• MPI program: set of execution branches

• each uniquely identified by a rank

• fully-connected graph

• set of comm. primitives provide the way

for ranks to exchange the data

cn1

0

1 2

cn2

3

4 5

cn3

6

7 8

cn4

9

10 11

IMPLEMENTATION:

• execution branch = OS process

• full connectivity is not scalable

• execution branches are mapped to physical resources: nodes/sockets/cores.

• comm. subsystem is heterogeneous: intra-node & inter-node set of communication

channels are different.

• OS processes need to be:

• launched;

• transparently wired up to enable necessary abstraction level;

• controlled (I/O forward, kill, cleanup, prestage, etc.)

• Either MPI implementation or Resource Manager (RM) provides RTE process to address

those issues.

cn1

0

1 2

cn2

3

4 5

cn3

6

7 8

cn4

9

10 11

RTE RTE RTE RTERTE daemon

management 

process

topic of this talk



© 2017 Mellanox Technologies 8

Process Management Interface: RTE – application

R
T

E
 

d
a

em
o

n

M
P

I

p
ro

ce
ss

Connect

ORTEd Hydra

ssh/

rsh

PMI

pbsdsh

tm_spawn()

blaunch

lsb_launch()

launch

control

IO forward

Remote

Execution

Service

Unix TORQUE LSF SLURM

MPD

qrsh llspawn

Load

Leveler
SGE

srun

SLURM 

PMI

MPI RTE (MPICH2, MVAPICH, Open MPI ORTE)

Distributed application (MPI, OpenSHMEM, …)Key-value Database



© 2017 Mellanox Technologies 9

PMIx endpoint exchange modes: full modex

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)



© 2017 Mellanox Technologies 10

PMIx endpoint exchange modes: full modex (2)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 
Get fabric

endpoint



© 2017 Mellanox Technologies 11

PMIx endpoint exchange modes: full modex (3)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

ep0

ep1

epK

ep(K+1)
ep(K+2)

ep(2K+1)Commit keys

to the 

local RTE

server



© 2017 Mellanox Technologies 12

PMIx endpoint exchange modes: full modex (4)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

ep0

ep1

epK

ep(K+1)
ep(K+2)

ep(2K+1)

fence_req(collect)

fence_req(collect)

Fence request



© 2017 Mellanox Technologies 13

PMIx endpoint exchange modes: full modex (5)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

ep0

ep1

epK

ep(K+1)
ep(K+2)

ep(2K+1)

Allgatherv(ep0,…ep(2K+1)

PMIx_Fence()

fence_resp fence_resp

All keys are on 

the node-local

RTE proc



© 2017 Mellanox Technologies 14

PMIx endpoint exchange modes: full modex (6)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = …
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

ep0

ep1

epK

ep(K+1)
ep(K+2)

ep(2K+1)

fence_req(collect)

fence_req(collect)Allgatherv(ep0,…ep(2K+1)

MPI_Send(K+2)

PMIx_Fence()

fence_resp fence_resp

? rank K+2

ep(K+2) MPI_Send(K+2)

M
P

I_
In

it
()



© 2017 Mellanox Technologies 15

PMIx endpoint exchange modes: direct modex

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

ep0

ep1

epK

ep(K+1)
ep(K+2)

ep(2K+1)

MPI_Send(K+2)

? rank K+2

ep(K+2)

MPI_Send(K+2)

? rank K+2

ep(K+2)



© 2017 Mellanox Technologies 16

PMIx endpoint exchange modes: instant-on (future)

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

ep0 = open_fabric()
ep1 = … 

epK = … 

ep(K+1) = open…()
ep(K+2) = … 

ep(2K+1) = … 

MPI_Send(K+2)

MPI_Send(K+2)

addr = fabric_ep(rank K+2)



© 2017 Mellanox Technologies 17

Agenda

• Problem description

• Slurm PMIx plugin status update

• Motivation of this work

• What is PMIx?

• RunTime Enviroment (RTE)

• Process Management Interface (PMI)

• PMIx endpoint exchange modes: full modex, direct modex, instant-on

• PMIx plugin (Slurm 16.05)

• High level overview of a Slurm RPC & analysis.

• PMIx plugin (Slurm 17.11) – revamp of OOB channel

• Direct-connect feature

• Revamp of PMIx plugin collectives

• Early wireup feature

• Performance results for Open MPI



© 2017 Mellanox Technologies 18

Slurm RPC workflow (1)

cn01 cn02

slurmd slurmd

Every node has slurmd daemon that controls it. It has a well-known TCP port that allows other 

components to communicate with it.

TCP:6818 TCP:6818



© 2017 Mellanox Technologies 19

Slurm RPC workflow (2)

cn01 cn02

slurmd slurmd

When a job is launched a SLURM step daemon (stepd) is used to control application processes. 

stepd also runs the instance of the PMIx server. stepd opens and listens for a UNIX socket.

TCP:6818 TCP:6818

stepd

UNIX:/tmp/pmix.JOBID

stepd

UNIX:/tmp/pmix.JOBID

rank0 rank2 rankX rank1 rank2 rankX+1



© 2017 Mellanox Technologies 20

Slurm RPC workflow (3)

SLURM provides RPC API that allows an easy way to communicate a process on the remote node 

without connection establishment: 

slurm_forward_data(nodelist, usock_path, len, data)

nodelist SLURM representation of nodenames: cn[01-10,20-30]

usock_path path to a UNIX socket file that the process you are trying to reach is listening

/tmp/pmix.JOBID

len length of a data buffer

data pointer to a data buffer



© 2017 Mellanox Technologies 21

Slurm RPC workflow (4)

cn01 cn02

slurmd slurmd

cn01: slurm_forward_data(“cn02”, “/tmp/pmix.JOBID”, len, data)

TCP:6818 TCP:6818

stepd

UNIX:/tmp/pmix.JOBID

stepd

UNIX:/tmp/pmix.JOBID

rank0 rank2 rankX rank1 rank2 rankX+1



© 2017 Mellanox Technologies 22

Slurm RPC workflow (5)

cn01 cn02

slurmd slurmd

cn01: slurm_forward_data(“cn02”, “/tmp/pmix.JOBID”, len, data)

TCP:6818 TCP:6818

stepd

UNIX:/tmp/pmix.JOBID

stepd

UNIX:/tmp/pmix.JOBID

rank0 rank2 rankX rank1 rank2 rankX+1

1) cn01/stepd reaching slurmd

using well-known TCP port



© 2017 Mellanox Technologies 23

Slurm RPC workflow (6)

cn01 cn02

slurmd slurmd

cn01: slurm_forward_data(“cn02”, “/tmp/pmix.JOBID”, len, data)

TCP:6818 TCP:6818

stepd

UNIX:/tmp/pmix.JOBID

stepd

UNIX:/tmp/pmix.JOBID

rank0 rank2 rankX rank1 rank2 rankX+1

2) cn02/slurmd is forwarding the

message to the final process inside

the node using UNIX socket

(dedicated thread)

Issue:

In direct modex CPUs of this node are

busy serving application processes.

Our observation identified that this

was causing significant scheduling

delays.

1) cn01/stepd reaching slurmd

using well-known TCP port



© 2017 Mellanox Technologies 24

Agenda

• Problem description

• Slurm PMIx plugin status update

• Motivation of this work

• What is PMIx?

• RunTime Enviroment (RTE)

• Process Management Interface (PMI)

• PMIx endpoint exchange modes: full modex, direct modex, instant-on

• PMIx plugin (Slurm 16.05)

• High level overview of a Slurm RPC & analysis.

• PMIx plugin (Slurm 17.11) – revamp of OOB channel

• Direct-connect feature

• Revamp of PMIx plugin collectives

• Early wireup feature

• Performance results for Open MPI



© 2017 Mellanox Technologies 25

Direct-connect feature

RTE node 1 RTE node 2

. . .proc 0 rank 1 rank K . . .proc K+1 rank K+2 rank (2K+1)

REQ:

Slurm RPC + ep0

ep0 = open_fabric()

ep1 = … 

direct_connect(ep0)

RESP:

direct + ep1 

direct_connect(ep1)

Direct-connect feature:

• the very first message is still sent

using Slurm RPC;

• the endpoint information is

incorporated in the initial message;

and

• is used on the remote side to

establish direct connection to the

sender;

• all communication from the remote

node will go through this direct

connection;

• if needed – symmetric connection

establishment will be performed
REQ: direct

RESP: direct



© 2017 Mellanox Technologies 26

Direct-connect feature: TCP-based

• The first version of direct-connect was TCP-based

• Slurm RPC is still supported, but needs to be enabled using SLURM_PMIX_DIRECT_CONN environment variable.

The performance of the OpenSHMEM jobstart was significantly improved. Below is the time to perform shmem_init() on 

32 nodes with various Process Per Node (PPN) count. sRPC stands for Slurm RPC, dTCP – TCP-based direct-connect.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

time, s

PPN

sRPC/dm dTCP/dm

 Related environment variables:

SLURM_PMIX_DIRECT_CONN = { true | false }

Enables direct connect, (true by default)



© 2017 Mellanox Technologies 27

Direct-connect feature: UCX-based

 Existing direct-connect infrastructure allowed to use HPC fabric for communication.

 Support for UCX porint-to-point communication library (www.openucx.com) was implemented.

 Slurm 17.11 should be configured with “--with-ucx=<ucx-path>” to enable UCX support.

Below is the latency measured for the point-to-point exchange* for each of the communication options available in

Slurm 17.11: (a) Slurm RPC (sRPC); (b) TCP-based direct-connect (dTCP); (c) UCX-based direct-connect (dUCX).

 Related environment variables:

SLURM_PMIX_DIRECT_CONN = {true | false}

Enables direct connect, (true by default)

SLURM_PMIX_DIRECT_CONN_UCX = {true | false}

Enables direct connect, (true by default)
1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+0 1.E+2 1.E+4 1.E+6

lat, s

size, B

sRPC dTCP dUCX

* See the backup slide #1 for the details about point-to-point benchmark

http://www.openucx.com/


© 2017 Mellanox Technologies 28

Revamp of PMIx plugin collectives

 PMIx plugin collectives infrastructure was also redesigned to leverage direct-connect feature.

 The results of a collective micro-benchmark (see backup slide #2) for 32-node cluster (one stepd per node)

are provided below:

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5

latency, s

size, B

sRPC dTCP dUCX

* See the backup slide #2 for the details about collectives benchmark



© 2017 Mellanox Technologies 29

Early wireup feature

 Implementation of the direct-connect assumes that Slurm RPC is still used for the address exchange.

 This address exchange is initiated at the first communication.

 This is an issue for PMIx full modex mode, because the first communication is usually the heaviest

(Allgatherv).

 To deal with that an early-wireup feature was introduced.

• The main idea is that step daemons start wiring up right after they were launched without waiting for

the first communication.

• Open MPI as an example usually does some local initialization that provides a reasonable room to

perform the wireup in the background.

Related environment variables:

SLURM_PMIX_DIRECT_CONN_EARLY = {true | false}



© 2017 Mellanox Technologies 30

Performance results for Open MPI modex

 At the small scale the latency of PMIx_Fence() is affected by the processes imbalance.

 To get the clear numbers we modified Open MPI ompi_mpi_init function by adding 2 additional

PMIx_Barrier()s as shown on the diagram below:

PMIx_Fence(collect=1)

ompi_mpi_init() [orig]

PMIx_Fence(collect=0)

Various initializations

Open fabric and submit the keys

add_proc

other stuff

2xPMIx_Fence(collect=0)

ompi_mpi_init() [eval]

PMIx_Fence(collect=0)

PMIx_Fence(collect=1)

Imbalance:

150us – 190ms

Imbalance:

200us – 4ms



© 2017 Mellanox Technologies 31

Performance results for Open MPI modex (2)

Below is the dependency of an average of a maximum time spent in PMIx_Fence(collect=1) relative to the

number of nodes is presented:

Measurements configuration:

• 32 nodes, 20 cores per node

• PPN = 20

• PMIx v1.2

• OMPI v2.x

• Slurm 17.11 (pre-release)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 5 10 15 20 25 30 35

lat, s

nodes

dTCP dUCX sRPC



© 2017 Mellanox Technologies 32

Future work

 Need wider testing of new features

• Let us know if you have any issues: artemp [at] mellanox.com

 Scaling tests and performance analysis

• Need to evaluate efficiency of early wireup feature

 Analyze possible impacts on other jobstart stages:

• Propagation of the Slurm launch message (deviation ~2ms).

• Initialization of the PMIx and UCX libraries (local overhead)

• Impact of UCX used for resource management on application processes

• Impact of local PMIx overhead

 Use this feature as an intermediate stage for instant-on

• Pre-calculate job’s stepd endpoint information and use UCX to exchange endpoint info for

application processes.



Thank You



© 2017 Mellanox Technologies 34

Integrated point-to-point micro-benchmark (backup#1)

 To estimate the point-to-point latency of available transports the point-to-point micro-benchmark was

introduced in Slurm PMIx plugin.

 To activate it, Slurm must be configured with “--enable-debug” option.

Related environment variables:

SLURM_PMIX_WANT_PP=1

Turn point-to-point benchmark on

SLURM_PMIX_PP_LOW_PWR2=0

SLURM_PMIX_PP_UP_PWR2=22

Message size range (powers of 2)

from 1 to 4194304 in this example

SLURM_PMIX_PP_ITER_SMALL=100

Number of iterations for small messages

SLURM_PMIX_PP_ITER_LARGE=20

Number of iterations for large messages

SLURM_PMIX_PP_LARGE_PWR2=10

Switch to the large message starting 

from 2^val

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+0 1.E+2 1.E+4 1.E+6

lat, s

size, B

sRPC dTCP dUCX



© 2017 Mellanox Technologies 35

Collective micro-benchmark (backup #2)

 PMIx plugin collectives infrastructure was also redesigned to leverage direct-connect feature.

 The results of a collective micro-benchmark for 32-node cluster (one stepd per node) are provided below:

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5

latency, s

size, B

sRPC dTCP dUCX

Related environment variables:

SLURM_PMIX_WANT_COLL_PERF=1

Turn collective benchmark on

SLURM_PMIX_COLL_PERF_LOW_PWR2=0

SLURM_PMIX_COLL_PERF_UP_PWR2=22

Message size range (powers of 2)

from 1 to 65536 in this example

SLURM_PMIX_COLL_PERF_ITER_SMALL=100

Number of iterations for small messages

SLURM_PMIX_COLL_PERF_ITER_LARGE=20

Number of iterations for large messages

SLURM_PMIX_COLL_PERF_LARGE_PWR2=10

Switch to the large message starting 

from 2^val


