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Outline

● Solution for ssh-launched processes
– Identify initiator of ssh connection

– pam_slurm_adopt:  Adopt ssh-launched processes 
into Slurm job

● New web-based tools for account coordinators 
to manage their accounts



  

History

● Switched to Slurm 2.5 from Moab/Torque in 
January 2013

● SchedMD support
● We're crazy

– We did a split-brain, rolling transition to Slurm

– Then we told our users
● Almost flawless

● Resources are free to use



  

Node sharing

● Shared node access unless user specifies 
--exclusive

● cgroups plugins enforce resource requests
● Linux namespaces control /tmp, /dev/shm
● Users are prevented from harming each other
● Works great except for ssh, the poor man's MPI



  

ssh-launched processes

● ssh-launched processes escape Slurm's 
oversight

● Instead of being a child of slurmd/slurmstepd, 
processes are children of sshd

● sshd knows nothing about Slurm
– No accounting, cgroups, cleanup on exit, etc.

● Best answer:  Don't use ssh to launch tasks
● Problem:  Reality



  

ssh->srun wrapper?

● An ssh wrapper sounds like a good idea...
● But is it 1:1 or 1:many tasks that will be launched on the remote 

node? In other words...
– Will the job run “ssh node7 ./dostuff-threaded -n 16” once?

– Or will the job run “ssh node7 ./dostuff-serial” 16 times?

● If the former, srun -n1 will only allow it access to one core but srun 
-N1 --exclusive will work

● If the latter, srun -n1 will work but srun -N1 --exclusive will block the 
next 15 instances

● Since it's just a wrapper, the wrapper can't know which behavior to 
use

● Each ssh wrapper instance would result in RPC to slurmctld to 
create a new step.  That can be many steps per job.



  

Obvious solution: PAM module

● PAM module should “adopt” ssh process into 
the correct job
– Account for it, move into correct cgroups, etc.

● Problem:  How does PAM know which job the 
ssh connection belongs to?



  

ssh's SendEnv/AcceptEnv + pam

● Use ssh's SendEnv/AcceptEnv to send 
$SLURM_JOB_ID?

● Confirmed to not work by openssh developer
– https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

● ssh runs pam authentication and session 
modules before user-provided environment is 
set

https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html


  

sshrc?

● /etc/ssh/sshrc might actually work
– Does have access to user-provided environment variables

– Runs as user, not root

● …except that users can override with ~/.ssh/rc
– Rare

– Can disable as of openssh 6.7 w/PermitUserRC=no
● https://bugzilla.mindrot.org/show_bug.cgi?id=2160

● Users can override $SLURM_JOB_ID
– Intentionally, accidentally, exec*e functions

● Can mess up sshrc in a way that breaks X11 and other things
● Messy in general but would likely work if PermitUserRC=no

https://bugzilla.mindrot.org/show_bug.cgi?id=2160


  

Does netstat have the answer?

● Trace the incoming connection
● netstat -np    # destination of ssh connection

Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name

tcp        0      0 10.1.123.106:42008      11.22.33.44:80          ESTABLISHED 6147/firefox    

tcp        0      0 10.1.123.106:37461      10.22.234.210:22        ESTABLISHED 3804/ssh        

tcp        0      0 10.1.123.106:59790      23.456.789.01:993       ESTABLISHED 28218/thunderbird

tcp        0      0 10.1.123.106:22         12.3.456.78:55777       ESTABLISHED 14881/sshd: ryancox

● Last line is incoming to sshd
● netstat -np    # source of ssh connection

tcp        0      0 12.3.456.78:55777       10.1.123.106:22       ESTABLISHED 23181/ssh



  

Solution

● Destination:
tcp        0      0 10.1.123.106:22         12.3.456.78:55777       ESTABLISHED 14881/sshd: ryancox

● Source:
tcp        0      0 12.3.456.78:55777       10.1.123.106:22         ESTABLISHED 23181/ssh

● The source host can determine the pid of the originating 
process

● Slurm tracks all processes
● Look up the job_id by pid with existing slurm_pid2jobid() 



  

New RPC

● “CallerID” - ask originating server for job ID 
using new RPC

● Created REQUEST_NETWORK_CALLERID
– RPC itself is OS-agnostic

– 5 fields: src and dst IP and port, IP version (4, 6)

● Response contains job_id and nodename
● Available starting with 15.08.0



  

Source Destination

ssh sshd

pam_slurm_adopt.so

Determine src/dst IP/port

callerid RPC to slurmd @ src IPslurmd

Find process that initiated connection

Find which job the process is in

Return job_id job_id returned to pam_slurm_adopt.so

adopt process into job

continue...

job 123



  

scontrol

● Support for RPC added to scontrol:

scontrol callerid <src_ip> <src_port> <dst_ip> <dst_port> <4|6>

– Remember that src is the source of the ssh connection, i.e. 
scontrol will connect to src, not dst

● scontrol callerid 192.168.0.99 49129 192.168.0.43 22 4

● scontrol callerid ::2 7788 ::1 22 6



  

Caveats

● Source IP address must have listening slurmd
– i.e. ssh connection must originate from an IP 

address that the local slurmd is listening on

● Linux-only for now but probably not hard to port
– RPC itself is OS-agnostic

● IPv6 is ready but Slurm RPCs are IPv4 only



  

Process Adoption

● Jobs are “adopted” into the appropriate job by 
pam_slurm_adopt.so

● A step must already exist on the node for processes 
to be adopted into

● SchedMD added a generic “extern” job step that is 
created at job launch time
– Enabled with PrologFlags=contain

– The adopted process will go into this step

● SchedMD also added stepd_add_extern_pid()



  

pam_slurm_adopt

● Several scenarios to handle in 
pam_slurm_adopt:

1) User has zero jobs

2) User has one job

3) User has multiple jobs

a) RPC successfully identifies the job

b) RPC fails to identify the job



  

pam_slurm_adopt: Zero jobs

● If the user has zero jobs, deny the connection
– Returns PAM_PERM_DENIED

– Other PAM modules can allow access anyway, such 
as pam_access

● Can modify this behavior with action_no_jobs 
parameter



  

pam_slurm_adopt: One job

● If the user has one job, assume the connection 
is associated with that job

● The only reason the user has access to the 
node is due to this one job, so we'll assume 
that they're associated

● Adopt process into the job



  

pam_slurm_adopt: Multiple jobs

● Use CallerID RPC to identify the remote job
● If it identifies a job, adopt the process into it
● This will work for “poor man's MPI”

– MPI without Slurm support (by design or incorrect 
compilation), Hadoop, ssh, etc.

– Anything launched from a batch job



  

pam_slurm_adopt: Multiple jobs

● If the RPC fails to identify the job: problem!
● Most common case:  User uses ssh on a login 

node to connect to a compute node w/multiple 
jobs
– Checking on a job (top, ps, strace, etc.)

● There is no perfect solution
● action_unknown parameter defines the 

behavior



  

pam_slurm_adopt: action_unknown

● action_unknown=newest     (default)
– Pick the newest job on the node

– User may be checking on job A but gets adopted into job B instead, 
then job B exits before job A

– Seems least bad

● action_unknown=user
– Used to use uid_$UID cgroup. Removed when 

stepd_add_extern_pid was implemented since it can't be supported 

● action_unknown=allow
● action_unknown=deny



  

Status

● 15.08.3 mostly works and is safe to use
– Processes are adopted and limited

– Accounting does not work and stray processes are not 
cleaned up after a job exits

● 15.08.4 reworked to use new stepd_add_extern_pid 
function
– Bug 2096: Stray processes not cleaned up

– Bug 2097: Accounting not working cpuset cgroup not created

● 15.08.5 will likely be completely functional
– Bug 2096 resolved? (as of this morning?)



  

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to 

switch to Fair Tree?



  

Open Source Code

● I'll reference several codes we have open 
sourced

http://github.com/BYUHPC

http://github.com/BYUHPC


  

Script Generator

● Available on github
– https://github.com/BYUHPC/BYUJobScriptGenerator

● User education and support made easy
● We don't teach basic syntax anymore

https://github.com/BYUHPC/BYUJobScriptGenerator


  



  

Features

● Users request features (-C avx) rather than partitions
– avx, avx2, fma, ib

● Also request memory, time
– Defaults: 1 core, 512 MB memory, 15 minutes

● Lua job submit plugin removes unusable partitions 
from the list of partitions they can use

● Least capable nodes scheduled first
● Better resource utilization, shorter avg. queue times



  

Job submit plugin

● Arbitrary business logic:
– Users should have access to the “special_snowflake” QOS on the third 

Wednesday of the month if the user's uid modulo day of month == 3 but only 
if they request 7 cores, 2 GPUs, and between 64 and 70 GB of memory

● General layout:
– all_partitions plugin sets a job's partition to all partitions, unless user 

requested a specific one(s)

– Lua script checks if job can run in partition. If not, remove from list
● Memory, CPU count, GRES

– Assigns to particular QOS as applicable

● Business logic is worth the few hours of learning
– Really, it's just a few hours



  

Maximum Job Timelimits

● 7 days on Ethernet cluster
● 3 days on everything else (IB, GPUs, fat nodes)
● Want to lower Ethernet cluster limit in future
● Installation of new clusters is a great time to 

transition to a lower walltime
– Need 7 days? Use the old stuff

– Only need 3 days?  You can use both old and new!



  

GrpCPURunMins

● Limit on cputime in use at one time:
– Limit on sum(cores allocated * remaining time)

● We set it per-account
● Encourages shorter walltimes

– The shorter your walltimes, the less you're affected

● Can stagger the start time of jobs
● Reduces average queue time for other accounts since 

nodes are more frequently freeing up (assuming lots of 
small jobs) 

More info:  http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html


  

Someone lowered their walltimes...

Time

C
P

U
s



  
Time

Green and red are in same account. Red submitted jobs but green's jobs were fairly staggered
due to GrpCPURunMins



  

GrpCPURunMins Simulator

● Available on github:
– https://github.com/BYUHPC/GrpCPURunMins-Visualizer

● Compare effect of GrpCPURunMins with 
different limits, job sizes, and job walltimes

● Can currently “use” more resources than are 
available
– We need to add a max core count (or GrpCPUs)

https://github.com/BYUHPC/GrpCPURunMins-Visualizer


  



  



  



  



  

Account Coordinator

● Each PI has a Slurm account
● Each PI is the account coordinator of that account
● Can kill/hold user jobs
● Can set shares for Fairshare and limits
● Can add/remove QOS for users for access to private resources 

(AllowQOS on partition)
● Reduces admin overhead
● Some GUI tools to assist

– https://github.com/BYUHPC/slurm-fairshare-pie

– https://github.com/BYUHPC/slurm-limits-web

https://github.com/BYUHPC/slurm-fairshare-pie
https://github.com/BYUHPC/slurm-limits-web


  



  



  



  



  



  

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to 

switch to Fair Tree?



  

Questions?

http://github.com/BYUHPC

http://github.com/BYUHPC
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