

Brigham Young University
Fulton Supercomputing Lab

Ryan Cox

SC15 – November 17, 2015 – Austin, TX

Outline

● Solution for ssh-launched processes
– Identify initiator of ssh connection

– pam_slurm_adopt: Adopt ssh-launched processes
into Slurm job

● New web-based tools for account coordinators
to manage their accounts

History

● Switched to Slurm 2.5 from Moab/Torque in
January 2013

● SchedMD support
● We're crazy

– We did a split-brain, rolling transition to Slurm

– Then we told our users
● Almost flawless

● Resources are free to use

Node sharing

● Shared node access unless user specifies
--exclusive

● cgroups plugins enforce resource requests
● Linux namespaces control /tmp, /dev/shm
● Users are prevented from harming each other
● Works great except for ssh, the poor man's MPI

ssh-launched processes

● ssh-launched processes escape Slurm's
oversight

● Instead of being a child of slurmd/slurmstepd,
processes are children of sshd

● sshd knows nothing about Slurm
– No accounting, cgroups, cleanup on exit, etc.

● Best answer: Don't use ssh to launch tasks
● Problem: Reality

ssh->srun wrapper?

● An ssh wrapper sounds like a good idea...
● But is it 1:1 or 1:many tasks that will be launched on the remote

node? In other words...
– Will the job run “ssh node7 ./dostuff-threaded -n 16” once?

– Or will the job run “ssh node7 ./dostuff-serial” 16 times?

● If the former, srun -n1 will only allow it access to one core but srun
-N1 --exclusive will work

● If the latter, srun -n1 will work but srun -N1 --exclusive will block the
next 15 instances

● Since it's just a wrapper, the wrapper can't know which behavior to
use

● Each ssh wrapper instance would result in RPC to slurmctld to
create a new step. That can be many steps per job.

Obvious solution: PAM module

● PAM module should “adopt” ssh process into
the correct job
– Account for it, move into correct cgroups, etc.

● Problem: How does PAM know which job the
ssh connection belongs to?

ssh's SendEnv/AcceptEnv + pam

● Use ssh's SendEnv/AcceptEnv to send
$SLURM_JOB_ID?

● Confirmed to not work by openssh developer
– https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

● ssh runs pam authentication and session
modules before user-provided environment is
set

https://lists.mindrot.org/pipermail/openssh-unix-dev/2013-October/031701.html

sshrc?

● /etc/ssh/sshrc might actually work
– Does have access to user-provided environment variables

– Runs as user, not root

● …except that users can override with ~/.ssh/rc
– Rare

– Can disable as of openssh 6.7 w/PermitUserRC=no
● https://bugzilla.mindrot.org/show_bug.cgi?id=2160

● Users can override $SLURM_JOB_ID
– Intentionally, accidentally, exec*e functions

● Can mess up sshrc in a way that breaks X11 and other things
● Messy in general but would likely work if PermitUserRC=no

https://bugzilla.mindrot.org/show_bug.cgi?id=2160

Does netstat have the answer?

● Trace the incoming connection
● netstat -np # destination of ssh connection

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 10.1.123.106:42008 11.22.33.44:80 ESTABLISHED 6147/firefox

tcp 0 0 10.1.123.106:37461 10.22.234.210:22 ESTABLISHED 3804/ssh

tcp 0 0 10.1.123.106:59790 23.456.789.01:993 ESTABLISHED 28218/thunderbird

tcp 0 0 10.1.123.106:22 12.3.456.78:55777 ESTABLISHED 14881/sshd: ryancox

● Last line is incoming to sshd
● netstat -np # source of ssh connection

tcp 0 0 12.3.456.78:55777 10.1.123.106:22 ESTABLISHED 23181/ssh

Solution

● Destination:
tcp 0 0 10.1.123.106:22 12.3.456.78:55777 ESTABLISHED 14881/sshd: ryancox

● Source:
tcp 0 0 12.3.456.78:55777 10.1.123.106:22 ESTABLISHED 23181/ssh

● The source host can determine the pid of the originating
process

● Slurm tracks all processes
● Look up the job_id by pid with existing slurm_pid2jobid()

New RPC

● “CallerID” - ask originating server for job ID
using new RPC

● Created REQUEST_NETWORK_CALLERID
– RPC itself is OS-agnostic

– 5 fields: src and dst IP and port, IP version (4, 6)

● Response contains job_id and nodename
● Available starting with 15.08.0

Source Destination

ssh sshd

pam_slurm_adopt.so

Determine src/dst IP/port

callerid RPC to slurmd @ src IPslurmd

Find process that initiated connection

Find which job the process is in

Return job_id job_id returned to pam_slurm_adopt.so

adopt process into job

continue...

job 123

scontrol

● Support for RPC added to scontrol:

scontrol callerid <src_ip> <src_port> <dst_ip> <dst_port> <4|6>

– Remember that src is the source of the ssh connection, i.e.
scontrol will connect to src, not dst

● scontrol callerid 192.168.0.99 49129 192.168.0.43 22 4

● scontrol callerid ::2 7788 ::1 22 6

Caveats

● Source IP address must have listening slurmd
– i.e. ssh connection must originate from an IP

address that the local slurmd is listening on

● Linux-only for now but probably not hard to port
– RPC itself is OS-agnostic

● IPv6 is ready but Slurm RPCs are IPv4 only

Process Adoption

● Jobs are “adopted” into the appropriate job by
pam_slurm_adopt.so

● A step must already exist on the node for processes
to be adopted into

● SchedMD added a generic “extern” job step that is
created at job launch time
– Enabled with PrologFlags=contain

– The adopted process will go into this step

● SchedMD also added stepd_add_extern_pid()

pam_slurm_adopt

● Several scenarios to handle in
pam_slurm_adopt:

1) User has zero jobs

2) User has one job

3) User has multiple jobs

a) RPC successfully identifies the job

b) RPC fails to identify the job

pam_slurm_adopt: Zero jobs

● If the user has zero jobs, deny the connection
– Returns PAM_PERM_DENIED

– Other PAM modules can allow access anyway, such
as pam_access

● Can modify this behavior with action_no_jobs
parameter

pam_slurm_adopt: One job

● If the user has one job, assume the connection
is associated with that job

● The only reason the user has access to the
node is due to this one job, so we'll assume
that they're associated

● Adopt process into the job

pam_slurm_adopt: Multiple jobs

● Use CallerID RPC to identify the remote job
● If it identifies a job, adopt the process into it
● This will work for “poor man's MPI”

– MPI without Slurm support (by design or incorrect
compilation), Hadoop, ssh, etc.

– Anything launched from a batch job

pam_slurm_adopt: Multiple jobs

● If the RPC fails to identify the job: problem!
● Most common case: User uses ssh on a login

node to connect to a compute node w/multiple
jobs
– Checking on a job (top, ps, strace, etc.)

● There is no perfect solution
● action_unknown parameter defines the

behavior

pam_slurm_adopt: action_unknown

● action_unknown=newest (default)
– Pick the newest job on the node

– User may be checking on job A but gets adopted into job B instead,
then job B exits before job A

– Seems least bad

● action_unknown=user
– Used to use uid_$UID cgroup. Removed when

stepd_add_extern_pid was implemented since it can't be supported

● action_unknown=allow
● action_unknown=deny

Status

● 15.08.3 mostly works and is safe to use
– Processes are adopted and limited

– Accounting does not work and stray processes are not
cleaned up after a job exits

● 15.08.4 reworked to use new stepd_add_extern_pid
function
– Bug 2096: Stray processes not cleaned up

– Bug 2097: Accounting not working cpuset cgroup not created

● 15.08.5 will likely be completely functional
– Bug 2096 resolved? (as of this morning?)

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to

switch to Fair Tree?

Open Source Code

● I'll reference several codes we have open
sourced

http://github.com/BYUHPC

http://github.com/BYUHPC

Script Generator

● Available on github
– https://github.com/BYUHPC/BYUJobScriptGenerator

● User education and support made easy
● We don't teach basic syntax anymore

https://github.com/BYUHPC/BYUJobScriptGenerator

Features

● Users request features (-C avx) rather than partitions
– avx, avx2, fma, ib

● Also request memory, time
– Defaults: 1 core, 512 MB memory, 15 minutes

● Lua job submit plugin removes unusable partitions
from the list of partitions they can use

● Least capable nodes scheduled first
● Better resource utilization, shorter avg. queue times

Job submit plugin

● Arbitrary business logic:
– Users should have access to the “special_snowflake” QOS on the third

Wednesday of the month if the user's uid modulo day of month == 3 but only
if they request 7 cores, 2 GPUs, and between 64 and 70 GB of memory

● General layout:
– all_partitions plugin sets a job's partition to all partitions, unless user

requested a specific one(s)

– Lua script checks if job can run in partition. If not, remove from list
● Memory, CPU count, GRES

– Assigns to particular QOS as applicable

● Business logic is worth the few hours of learning
– Really, it's just a few hours

Maximum Job Timelimits

● 7 days on Ethernet cluster
● 3 days on everything else (IB, GPUs, fat nodes)
● Want to lower Ethernet cluster limit in future
● Installation of new clusters is a great time to

transition to a lower walltime
– Need 7 days? Use the old stuff

– Only need 3 days? You can use both old and new!

GrpCPURunMins

● Limit on cputime in use at one time:
– Limit on sum(cores allocated * remaining time)

● We set it per-account
● Encourages shorter walltimes

– The shorter your walltimes, the less you're affected

● Can stagger the start time of jobs
● Reduces average queue time for other accounts since

nodes are more frequently freeing up (assuming lots of
small jobs)

More info: http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

http://tech.ryancox.net/2014/04/scheduler-limit-remaining-cputime-per.html

Someone lowered their walltimes...

Time

C
P

U
s

Time

Green and red are in same account. Red submitted jobs but green's jobs were fairly staggered
due to GrpCPURunMins

GrpCPURunMins Simulator

● Available on github:
– https://github.com/BYUHPC/GrpCPURunMins-Visualizer

● Compare effect of GrpCPURunMins with
different limits, job sizes, and job walltimes

● Can currently “use” more resources than are
available
– We need to add a max core count (or GrpCPUs)

https://github.com/BYUHPC/GrpCPURunMins-Visualizer

Account Coordinator

● Each PI has a Slurm account
● Each PI is the account coordinator of that account
● Can kill/hold user jobs
● Can set shares for Fairshare and limits
● Can add/remove QOS for users for access to private resources

(AllowQOS on partition)
● Reduces admin overhead
● Some GUI tools to assist

– https://github.com/BYUHPC/slurm-fairshare-pie

– https://github.com/BYUHPC/slurm-limits-web

https://github.com/BYUHPC/slurm-fairshare-pie
https://github.com/BYUHPC/slurm-limits-web

Fairshare

● Fair Tree fairshare algorithm
● Works well for us
● How many of you are using or planning to

switch to Fair Tree?

Questions?

http://github.com/BYUHPC

http://github.com/BYUHPC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

